PraisonAI is an AI Agents Framework with Self Reflection. PraisonAI application combines PraisonAI Agents, AutoGen, and CrewAI into a low-code solution for building and managing multi-agent LLM systems, focusing on simplicity, customisation, and efficient human–agent collaboration.
- 🤖 Automated AI Agents Creation
- 🔄 Self Reflection AI Agents
- 🧠 Reasoning AI Agents
- 👁️ Multi Modal AI Agents
- 🤝 Multi Agent Collaboration
- ⚡ AI Agent Workflow
- 🔄 Use CrewAI or AutoGen Framework
- 💯 100+ LLM Support
- 💻 Chat with ENTIRE Codebase
- 🎨 Interactive UIs
- 📄 YAML-based Configuration
- 🛠️ Custom Tool Integration
- 🔍 Internet Search Capability (using Crawl4AI and Tavily)
- 🖼️ Vision Language Model (VLM) Support
- 🎙️ Real-time Voice Interaction
pip install praisonai
export OPENAI_API_KEY=xxxxxxxxxxxxxxxxxxxxxx
praisonai --auto create a movie script about Robots in Mars
pip install praisonai
export OPENAI_API_KEY=xxxxxxxxxxxxxxxxxxxxxx
praisonai --init create a movie script about Robots in Mars
praisonai
Light weight package dedicated for coding:
pip install praisonaiagents
export OPENAI_API_KEY=xxxxxxxxxxxxxxxxxxxxxx
Create app.py file and add the code below:
from praisonaiagents import Agent, Task, PraisonAIAgents
# 1. Create agents
researcher = Agent(
name="Researcher",
role="Senior Research Analyst",
goal="Uncover cutting-edge developments in AI and data science",
backstory="""You are an expert at a technology research group,
skilled in identifying trends and analyzing complex data.""",
verbose=True,
llm="gpt-4o",
markdown=True
)
writer = Agent(
name="Writer",
role="Tech Content Strategist",
goal="Craft compelling content on tech advancements",
backstory="""You are a content strategist known for
making complex tech topics interesting and easy to understand.""",
llm="gpt-4o",
markdown=True
)
# 2. Define Tasks
task1 = Task(
name="research_task",
description="""Analyze 2024's AI advancements.
Find major trends, new technologies, and their effects.""",
expected_output="""A detailed report on 2024 AI advancements""",
agent=researcher
)
task2 = Task(
name="writing_task",
description="""Create a blog post about major AI advancements using the insights you have.
Make it interesting, clear, and suited for tech enthusiasts.
It should be at least 4 paragraphs long.""",
expected_output="A blog post of at least 4 paragraphs",
agent=writer,
)
agents = PraisonAIAgents(
agents=[researcher, writer],
tasks=[task1, task2],
verbose=False,
process="hierarchical",
manager_llm="gpt-4o"
)
result = agents.start()
Run:
python app.py
export OPENAI_BASE_URL=http://localhost:11434/v1
Replace xxxx with Groq API KEY:
export OPENAI_API_KEY=xxxxxxxxxxx
export OPENAI_BASE_URL=https://api.groq.com/openai/v1
export LOGLEVEL=info
Advanced logging:
export LOGLEVEL=debug
Interface | Description | URL |
---|---|---|
UI | Multi Agents such as CrewAI or AutoGen | https://docs.praison.ai/ui/ui |
Chat | Chat with 100+ LLMs, single AI Agent | https://docs.praison.ai/ui/chat |
Code | Chat with entire Codebase, single AI Agent | https://docs.praison.ai/ui/code |
Realtime | Real-time voice interaction with AI | https://docs.praison.ai/ui/realtime |
Other Features | Description | Docs |
---|---|---|
Train | Fine-tune LLMs using your custom data | https://docs.praison.ai/train |
Cookbook | Open in Colab | |
---|---|---|
Basic | PraisonAI | |
Include Tools | PraisonAI Tools |
pip install praisonai
# Install with CrewAI support
pip install "praisonai[crewai]"
# Install with AutoGen support
pip install "praisonai[autogen]"
# Install with both frameworks
pip install "praisonai[crewai,autogen]"
# Install UI support
pip install "praisonai[ui]"
# Install Chat interface
pip install "praisonai[chat]"
# Install Code interface
pip install "praisonai[code]"
# Install Realtime voice interaction
pip install "praisonai[realtime]"
# Install Call feature
pip install "praisonai[call]"
# Set your OpenAI API key
export OPENAI_API_KEY="Enter your API key"
# Initialize with CrewAI (default)
praisonai --init "create a movie script about dog in moon"
# Or initialize with AutoGen
praisonai --framework autogen --init "create a movie script about dog in moon"
# Run the agents
praisonai
# With CrewAI (default)
praisonai --auto "create a movie script about Dog in Moon"
# With AutoGen
praisonai --framework autogen --auto "create a movie script about Dog in Moon"
When installing with pip install "praisonai[crewai]"
, you get:
- CrewAI framework support
- PraisonAI tools integration
- Task delegation capabilities
- Sequential and parallel task execution
When installing with pip install "praisonai[autogen]"
, you get:
- AutoGen framework support
- PraisonAI tools integration
- Multi-agent conversation capabilities
- Code execution environment
pip install praisonai
export OPENAI_API_KEY="Enter your API key"
praisonai --init create a movie script about dog in moon
praisonai
- Installation
- Initialise
- Run
- Full Automatic Mode
- User Interface
- Praison AI Chat
- Create Custom Tools
- Agents Playbook
- Include praisonai package in your project
- Commands to Install Dev Dependencies
- Other Models
- Contributing
- Star History
pip install praisonai
export OPENAI_API_KEY="Enter your API key"
Generate your OPENAI API KEY from here: https://platform.openai.com/api-keys
Note: You can use other providers such as Ollama, Mistral ... etc. Details are provided at the bottom.
praisonai --init create a movie script about dog in moon
This will automatically create agents.yaml file in the current directory.
praisonai --framework autogen --init create movie script about cat in mars
praisonai
or
python -m praisonai
praisonai --framework autogen
praisonai --auto create a movie script about Dog in Moon
Interface | Description | URL |
---|---|---|
UI | Multi Agents such as CrewAI or AutoGen | https://docs.praisonai.com/ui/ui |
Chat | Chat with 100+ LLMs, single AI Agent | https://docs.praisonai.com/ui/chat |
Code | Chat with entire Codebase, single AI Agent | https://docs.praisonai.com/ui/code |
pip install -U "praisonai[ui]"
export OPENAI_API_KEY="Enter your API key"
chainlit create-secret
export CHAINLIT_AUTH_SECRET=xxxxxxxx
praisonai ui
or
python -m praisonai ui
pip install "praisonai[chat]"
export OPENAI_API_KEY="Enter your API key"
praisonai chat
Praison AI Chat and Praison AI Code now includes internet search capabilities using Crawl4AI and Tavily, allowing you to retrieve up-to-date information during your conversations.
You can now upload images and ask questions based on them using Vision Language Models. This feature enables visual understanding and analysis within your chat sessions.
pip install "praisonai[code]"
export OPENAI_API_KEY="Enter your API key"
praisonai code
Praison AI Code also includes internet search functionality, enabling you to find relevant code snippets and programming information online.
framework: crewai
topic: Artificial Intelligence
roles:
screenwriter:
backstory: "Skilled in crafting scripts with engaging dialogue about {topic}."
goal: Create scripts from concepts.
role: Screenwriter
tasks:
scriptwriting_task:
description: "Develop scripts with compelling characters and dialogue about {topic}."
expected_output: "Complete script ready for production."
from praisonai import PraisonAI
# Example agent_yaml content
agent_yaml = """
framework: "crewai"
topic: "Space Exploration"
roles:
astronomer:
role: "Space Researcher"
goal: "Discover new insights about {topic}"
backstory: "You are a curious and dedicated astronomer with a passion for unraveling the mysteries of the cosmos."
tasks:
investigate_exoplanets:
description: "Research and compile information about exoplanets discovered in the last decade."
expected_output: "A summarized report on exoplanet discoveries, including their size, potential habitability, and distance from Earth."
"""
# Create a PraisonAI instance with the agent_yaml content
praisonai = PraisonAI(agent_yaml=agent_yaml)
# Run PraisonAI
result = praisonai.run()
# Print the result
print(result)
Note: Please create agents.yaml file before hand.
from praisonai import PraisonAI
def basic(): # Basic Mode
praisonai = PraisonAI(agent_file="agents.yaml")
praisonai.run()
if __name__ == "__main__":
basic()
# Install uv if you haven't already
pip install uv
# Install from requirements
uv pip install -r pyproject.toml
# Install with extras
uv pip install -r pyproject.toml --extra code
uv pip install -r pyproject.toml --extra "crewai,autogen"
- Fork on GitHub: Use the "Fork" button on the repository page.
- Clone your fork:
git clone https://github.com/yourusername/praisonAI.git
- Create a branch:
git checkout -b new-feature
- Make changes and commit:
git commit -am "Add some feature"
- Push to your fork:
git push origin new-feature
- Submit a pull request via GitHub's web interface.
- Await feedback from project maintainers.
Praison AI is an open-sourced software licensed under the MIT license.
Praison AI is an open-sourced software licensed under the MIT license.
To facilitate local development with live reload, you can use Docker. Follow the steps below:
-
Create a
Dockerfile.dev
:FROM python:3.11-slim WORKDIR /app COPY . . RUN pip install flask praisonai==2.0.18 watchdog EXPOSE 5555 ENV FLASK_ENV=development CMD ["flask", "run", "--host=0.0.0.0"]
-
Create a
docker-compose.yml
:version: '3.8' services: app: build: context: . dockerfile: Dockerfile.dev volumes: - .:/app ports: - "5555:5555" environment: FLASK_ENV: development command: flask run --host=0.0.0.0 watch: image: alpine:latest volumes: - .:/app command: sh -c "apk add --no-cache inotify-tools && while inotifywait -r -e modify,create,delete /app; do kill -HUP 1; done"
-
Run Docker Compose:
docker-compose up
This setup will allow you to develop locally with live reload, making it easier to test and iterate on your code.