Skip to content

This is the second project of the Udacity's Data Science Nanodegree called it: "Disaster Responde ".

Notifications You must be signed in to change notification settings

MikeDiaz93/Disaster_Response_Pipelines

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Disaster Response Pipelines

Second Project of the Data Science Nanodegree Udacity

Introduction

This project is part of the Udacity's Data Scientist Nanodegre in collaboration with Figure Eight. The initial dataset contains pre-labelled tweet and messages from real-life disaster. The aim of the project is to build a Natural Language Processing tool that categorize messages.

The Project is divided in the 3 main sections:

Data Processing, ETL Pipeline to extract data from source, clean data and save them in a proper databse structure Machine Learning Pipeline to train a model able to classify text message in categories Web App to show model results in real time.

Goal

The goal of this project is to analyze disaster data from Figure Eight to build a model for an API that classifies disaster messages.

Dependencies

  • Python 3.5+
  • NumPy
  • Sciki-Learn
  • SQLalchemy
  • Pandas
  • NLTK
  • Plotly
  • SciPy
  • Flask
  • Sys
  • Pickle

Run the Web App

Run the following commands in the project's root directory to set up your database and model.

To run ETL pipeline that cleans data and stores in database:

python data/process_data.py data/messages.csv data/categories.csv data/DisasterResponse.db

To run ML pipeline that trains classifier and saves it as a pickle file:

python models/train_classifier.py data/DisasterResponse.db models/classifier.pkl

Run the following command in the app's directory to run your web app. python run.py

Go to http://0.0.0.0:3001/

Files descriptions

data/process_data.py: python script that reads two csv files (the messages and the categories files) and creates a sql alchemy database.

data/messages.csv: csv file with the messages data.

data/categories.csv: csv table with the categories data (for each message).

data/DisasterResponse.db: output of the process_data.py script

models/train_classifier.py: python script that reads the sql alchemy database and creates and trains a pkl file classifier and stores it in a pickle file.

app/run.py: python scripts that runs the entire app.

app/templates/* : html templates.

About

This is the second project of the Udacity's Data Science Nanodegree called it: "Disaster Responde ".

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published