Skip to content

Commit

Permalink
Merge pull request #42 from NGSolve/uzerbinati/docs
Browse files Browse the repository at this point in the history
Docs
  • Loading branch information
UZerbinati authored Jun 17, 2024
2 parents ea88868 + 04c9ff5 commit 4914d81
Show file tree
Hide file tree
Showing 37 changed files with 2,574 additions and 19,024 deletions.
2 changes: 2 additions & 0 deletions docs/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -80,6 +80,8 @@ sphinxcontrib-jquery
sphinxcontrib-jsmath
sphinxcontrib-qthelp
sphinxcontrib-serializinghtml
sphinx-autoapi
sphinxcontrib-video
stack-data==0.6.2
tbb==2021.9.0
tinycss2==1.2.1
Expand Down
201 changes: 201 additions & 0 deletions docs/src/PETScBasic/pinvt.py.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,201 @@
Preconditioned Inverse Iteration for Laplace Eigenvalue Problems
=================================================================
We will here implement a simple preconditioned inverse iteration
using basic PETSc functionalities.
In pparticular, we will show how to use the :code:`VectorMapping` class to
map PETSc vectors to NGSolve vectors and vice versa and the
:code:`Matrix` class to create a PETSc matrix from an NGSolve
:code:`BilinearForm`.
First we need to construct the distributed mesh that will be used to
define the finite element space that will be used to discretize the
PDE here considered. ::

from ngsolve import Mesh
from netgen.geom2d import unit_square
import netgen.meshing as ngm

if COMM_WORLD.rank == 0:
mesh = Mesh(unit_square.GenerateMesh(maxh=0.2).Distribute(COMM_WORLD))
else:
mesh = Mesh(ngm.Mesh.Receive(COMM_WORLD))

We now proceed constructing a linear polynomial finite element space,
with :math:`H^1` conformity, and discretize the mass matrix that
represent the :math:`L^2` scalar product in the discrete context. We
create a mass matrix to initialize an NGSolve vector corresponding to a
:code:`GridFunction` defined on the finite element space here considered. ::

from ngsolve import H1, BilinearForm, dx
fes = H1(mesh, order=1, dirichlet="left|right|top|bottom")
u,v = fes.TnT()
m = BilinearForm(u*v*dx).Assemble()
M = m.mat
ngsVec = M.CreateColVector()

We are now ready to create a :code:`VectorMapping` that we will first use
to construct a PETSc vecotr corresponding to the :code:`ngsVec` just
initialized. The only information that the :code:`VectorMapping` class
needs is the finite element space corresponding to the vector
associated with the :code:`GridFunction` we aim to map, because the
NGSolve :cdoe:`FESpace` class contains information about the way the
degrees of freedom are distributed and which degrees of freedom are
not constrained by the boundary conditions. ::

from ngsPETSc import VectorMapping
Map = VectorMapping(fes)
petscVec = Map.petscVec(ngsVec)
print("Vector type is {} and it has size {}.".format(petscVec.type,petscVec.size))

We now use the :code:`Matrix` class to create a PETSc matrix from a
NGSolve :code:`BilinearForm`. Once the :code:`Matrix` class has been set up,
it is possible to access the corresponding PETSc matrix object as
:code:`Matrix().mat`. By default, if the communicator world is larger
than one :code:`mat` is initialized as a PETSc ``mpiaij`` which is the
default sparse parallel matrix in PETSc, while if the communicator
world is one then :code:`mat` is initialized as a PETSc ``seqaij`` which
is the default serial matrix in PETSc. We can also spy inside the
matrix using the ``Matrix().view()`` method. ::

from ngsPETSc import Matrix
M = Matrix(m.mat, fes)
print("Matrix type is {} and it has size {}.".format(M.mat.type,M.mat.size))
M.view()

There are other matrices format that are wrapped some of which are
device dependent, to mention a few:

- ``dense``, store and operate on the matrix in dense format,
- ``cusparse``, store and operate on the matrix on NVIDIA GPU device
in CUDA sparse format,
- ``aijmkl``, store and operate on the matrix in Intel MKL format.


We will now focus on implementing the Precondition INVerse ITeration (PINVIT)
developed by Knyazef and Neymeyr, more detail
`here <https://doi.org/10.1016/S0024-3795(00)00239-1>`__, using
PETSc. In particular, we will use the PINVIT scheme to compute the
eigenvalue of the Laplacian, i.e. we are looking for
:math:`\lambda\in \mathbb{R}` such that it exits
:math:`u\in H^1_0(\Omega)` that verifies following equation for any
:math:`v\in H^1_0(\Omega)`

.. math:: \int_\Omega \nabla u \cdot \nabla v \; d\vec{x} = \lambda \int_\Omega uv\;d\vec{x}.

We solve this specific problem by looking for the eigenvalue of the
generalised eigenproblem :math:`A\vec{u}_h = \lambda M\vec{u}_h`
where :math:`A` and :math:`M` are the finite element discretisation
respectively of the stiffness matrix corresponding to the Laplacian
and the mass matrix corresponding to the :math:`L^2` inner product.
We begin constructing the finite element discretisation for :math:`A`
and :math:`M`. ::

from ngsolve import grad, Preconditioner, GridFunction
a = BilinearForm(fes)
a += grad(u)*grad(v)*dx
a.Assemble()
u = GridFunction(fes)

The heart of the PINVIT scheme there is an iteration similar idea to
the Rayleigh quotient iteration for a generalised eigenvalue problem,
more detail can be found in Nick Trefethen's `Numerical Linear
Algebra <https://doi.org/10.1137/1.9780898719574>`__, Lecture 27:

.. math:: \vec{u}_h^{(n+1)} = \omega_1^{(n)}\vec{u}_{h}^{(n)}+\omega_2^{(n)} \vec{\omega}_h^{(n)}, \qquad \vec{\omega}_h^{(n)}= P^{-1}(A\vec{u}_h^{(n)}-\rho_n M\vec{u}_h^{(n)}),

where :math:`P^{-1}` is an approximate inverse of the stifness matrix
:math:`A` and :math:`\rho_n` is the Rayleigh quotient corresponding
to :math:`\vec{u}_h^{(n)}`, i.e.

.. math:: \rho_{n} = \frac{(\vec{u}_h^{(n)}, A \vec{u}_h^{(n)})}{(\vec{u}_h^{(n)}, M\vec{u}_h^{(n)})}.

Instrumental in order to obtain a converged PINVIT scheme is our
choice of :math:`\alpha_n`, but we will postpone this discussion and
first, implement the previous iteration for a fixed choice of
:math:`\omega_i^{(n)}`. ::

def stepChoice(Asc,Msc,w,u0):
return (0.5,0.5)

We begin constructing a PETSc matrix object corresponding to
:math:`A` and :math:`M` using the ngsPETSc ``Matrix`` class. We then
construct a :code:`VectorMapping` to convert NGSolve :code:`GridFunction` to
PETSc vectors. ::

A = Matrix(a.mat, fes)
M = Matrix(m.mat, fes)
Map = VectorMapping(fes)

We then construct a PETSc preconditioner object used to create an approximate
inverse of :math:`A`, in particular we will be interested in using a
preconditioner build using HYPRE. ::

from petsc4py import PETSc
pc = PETSc.PC()
pc.create(PETSc.COMM_WORLD)
pc.setOperators(A.mat)
pc.setType(PETSc.PC.Type.HYPRE)
pc.setUp()

We now implement the iteration itself, starting from a PETSc vector
that we create from a PETSc matrix to be sure it has the correct
size, and that we then set to have random entries. ::

from math import pi
itMax = 10
u0 = A.mat.createVecLeft()
w = A.mat.createVecLeft()
u0.setRandom()
for it in range(itMax):
Au0 = u0.duplicate(); A.mat.mult(u0,Au0)
Mu0 = u0.duplicate(); M.mat.mult(u0,Mu0)
rho = Au0.dot(u0)/Mu0.dot(u0)
print("[{}] Eigenvalue estimate: {}".format(it,rho/(pi**2)))
u = Au0+rho*Mu0
pc.apply(u,w)
alpha = stepChoice(A.mat,M.mat,w,u0)
u0 = alpha[0]*u0+alpha[1]*w

We now need to discuss how to choose the step size :math:`\omega_i`
and we do this by solving the optimization problem,

.. math:: \vec{u}_h^{(n+1)} = \underset{\vec{v}\in <\vec{u}_h^{n},\, \vec{\omega}_h^{(n)}>}{arg\;min} \frac{(\vec{u}_h^{(n+1)}, A \vec{u}_h^{(n+1)})}{(\vec{u}_h^{(n+1)}, M\vec{u}_h^{(n+1)})}

and we do solve a small generalized eigenvalue problem, i.e.

.. math::
\begin{bmatrix}
\vec{u}_h^{(n)}\cdot A \vec{u}_h^{(n)} & \vec{u_h}^{(n)}\cdot A \vec{\omega}_h^{(n)}\\
\vec{\omega}_h^{(n)}\cdot A \vec{u}_h^{(n)} & \vec{\omega}_h^{(n)}\cdot A \vec{\omega}_h^{(n)}
\end{bmatrix} = \omega \begin{bmatrix}
\vec{u}_h^{(n)}\cdot M \vec{u}_h^{(n)} & \vec{u_h}^{(n)}\cdot M \vec{\omega}_h^{(n)}\\
\vec{\omega}_h^{(n)}\cdot M \vec{u}_h^{(n)} & \vec{\omega}_h^{(n)}\cdot M \vec{\omega}_h^{(n)}
\end{bmatrix}.
::

import numpy as np
from scipy.linalg import eigh
def stepChoice(Asc,Msc,w,u0):
Au0 = u0.duplicate(); Asc.mult(u0,Au0)
Mu0 = u0.duplicate(); Msc.mult(u0,Mu0)
Aw = w.duplicate(); Asc.mult(w,Aw)
Mw = w.duplicate(); Msc.mult(w,Mw)
smallA = np.array([[u0.dot(Au0),u0.dot(Aw)],[w.dot(Au0),w.dot(Aw)]])
smallM = np.array([[u0.dot(Mu0),u0.dot(Mw)],[w.dot(Mu0),w.dot(Mw)]])
_, evec = eigh(a=smallA, b=smallM)
return (float(evec[0,0]),float(evec[1,0]))

itMax = 10
u0 = A.mat.createVecLeft()
w = A.mat.createVecLeft()
u0.setRandom()
for it in range(itMax):
Au0 = u0.duplicate(); A.mat.mult(u0,Au0)
Mu0 = u0.duplicate(); M.mat.mult(u0,Mu0)
rho = Au0.dot(u0)/Mu0.dot(u0)
print("[{}] Eigenvalue estimate: {}".format(it,rho/(pi**2)))
u = Au0+rho*Mu0
pc.apply(u,w)
alpha = stepChoice(A.mat,M.mat,w,u0)
u0 = alpha[0]*u0+alpha[1]*w
87 changes: 87 additions & 0 deletions docs/src/PETScKSP/elasticity.py.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
Solving linear elasticity with a near nullspace
==============================================

In this tutorial, we explore a linear elasticity discretisation.
As we did in :doc:`poisson.py`, we will solve the linear system originating from the discretization using a `PETSc KSP`.
We begin by creating a discretisation for the weak formulation of linear elasticity with Lame coefficients :math:`\mu` and :math:`\lambda`, i.e.

.. math::
\text{find } \vec{u}\in [H^1_0(\Omega)]^d \text{ s.t. } a(u,v) := 2\mu \int_{\Omega} \epsilon(\vec{u}) : \epsilon(\vec{v}) \; d\vec{x} + \lambda \int_\Omega (\nabla \cdot \vec{u})\; d\vec{x} = L(v) := \int_{\Omega} fv\; d\vec{x}\qquad \vec{v}\in [H^1_0(\Omega)]^d.
Such a discretisation can easily be constructed using NGSolve as follows: ::

from ngsolve import *
import netgen.gui
import netgen.meshing as ngm
from mpi4py.MPI import COMM_WORLD

if COMM_WORLD.rank == 0:
mesh = Mesh(unit_square.GenerateMesh(maxh=0.1).Distribute(COMM_WORLD))
else:
mesh = Mesh(ngm.Mesh.Receive(COMM_WORLD))

E, nu = 210, 0.2
mu = E / 2 / (1+nu)
lam = E * nu / ((1+nu)*(1-2*nu))

def Stress(strain):
return 2*mu*strain + lam*Trace(strain)*Id(2)

fes = VectorH1(mesh, order=1, dirichlet="left")
u,v = fes.TnT()

a = BilinearForm(InnerProduct(Stress(Sym(Grad(u))), Sym(Grad(v)))*dx)
a.Assemble()

force = CF( (0,1) )
f = LinearForm(force*v*ds("right")).Assemble()

We begin solving the linear system using `PETSc GAMG` as a preconditioner. ::

from ngsPETSc import KrylovSolver
opts = {'ksp_type': 'cg',
'ksp_monitor': None,
'pc_type': 'gamg'}
solver = KrylovSolver(a,fes, solverParameters=opts)
gfu = GridFunction(fes, name="gfu")
solver.solve(f.vec, gfu.vec)
Draw (gfu)

.. list-table:: Preconditioner performance for PETSc GAMG.
:widths: auto
:header-rows: 1

* - Preconditioner
- Iterations
* - PETSc GAMG
- 19 (6.27e-08)

To improve the performance of `HYPRE` can now construct a null space made of the rigid body motions as follows.
Using the :code:`near` flag we tell `PETSc KSP` to pass the nullspace as a near nullspace to `PETSc GAMG`. ::

from ngsPETSc import NullSpace
rbms = []
for val in [(1,0), (0,1), (-y,x)]:
rbm = GridFunction(fes)
rbm.Set(CF(val))
rbms.append(rbm.vec)
nullspace = NullSpace(fes, rbms, near=True)
opts = {'ksp_type': 'cg',
'pc_monitor': None,
'pc_type': 'gamg'}
solver = KrylovSolver(a,fes, solverParameters=opts, nullspace=nullspace)
gfu = GridFunction(fes, name="gfu_near")
solver.solve(f.vec, gfu.vec)
Draw (gfu)

.. list-table:: Preconditioner performance for PETSc GAMG.
:widths: auto
:header-rows: 1

* - Preconditioner
- Iterations
* - PETSc GAMG
- 19 (6.27e-08)
* - PETSc GAMG (with near nullspace)
- 6 (4.55e-07)
Loading

0 comments on commit 4914d81

Please sign in to comment.