Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

speeding up Parquet_output function by vectorizing #816

Merged
merged 3 commits into from
Aug 1, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 44 additions & 19 deletions src/troute-nwm/src/nwm_routing/output.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,28 +64,53 @@ def _parquet_output_format_converter(df, start_datetime, dt, configuration, pref
--------
- timeseries_df (DataFrame): Converted timeseries data frame
'''

df.index.name = 'location_id'
df.reset_index(inplace=True)
timeseries_df = df.melt(id_vars=['location_id'], var_name='var')
timeseries_df['var'] = timeseries_df['var'].astype('string')
timeseries_df[['timestep', 'variable']] = timeseries_df['var'].str.strip("()").str.split(",", n=1, expand=True)
timeseries_df['variable'] = timeseries_df['variable'].str.strip().str.replace("'", "")
timeseries_df['timestep'] = timeseries_df['timestep'].astype('int')
timeseries_df['value_time'] = (start_datetime + pd.to_timedelta(timeseries_df['timestep'] * dt, unit='s'))
variable_to_name_map = {"q": "streamflow", "d": "depth", "v": "velocity"}
timeseries_df["variable_name"] = timeseries_df["variable"].map(variable_to_name_map)
timeseries_df.drop(['var', 'timestep', 'variable'], axis=1, inplace=True)
timeseries_df['configuration'] = configuration
variable_to_units_map = {"streamflow": "m3/s", "velocity": "m/s", "depth": "m"}
timeseries_df['units'] = timeseries_df['variable_name'].map(variable_to_units_map)
timeseries_df['reference_time'] = start_datetime.date()
timeseries_df['location_id'] = timeseries_df['location_id'].astype('string')
timeseries_df['location_id'] = prefix_ids + '-' + timeseries_df['location_id']
timeseries_df['value'] = timeseries_df['value'].astype('double')
timeseries_df['reference_time'] = timeseries_df['reference_time'].astype('datetime64[us]')
timeseries_df['value_time'] = timeseries_df['value_time'].astype('datetime64[us]')

# Prepare the location_id with prefix
df.index.name = 'location_id'
df.reset_index(inplace=True)
location_ids = prefix_ids + '-' + df['location_id'].astype(str)
shorvath-noaa marked this conversation as resolved.
Show resolved Hide resolved

# Flatten the dataframe using NumPy
num_locations = df.shape[0]
num_time_variables = df.shape[1] - 1
num_records = num_locations * num_time_variables

# Prepare timestep and variable arrays
times = df.columns[1:]
timesteps = np.array([t[0] for t in times], dtype=int)
variables = np.array([t[1] for t in times])

# Preallocate arrays
location_ids_repeated = np.tile(location_ids, num_time_variables)
value_time = np.empty(num_records, dtype='datetime64[us]')
variable_names = np.empty(num_records, dtype=object)
units = np.empty(num_records, dtype=object)
values = np.empty(num_records, dtype=float)

# Calculate value_time, variable_names, units, and values in a vectorized manner
for i in range(num_time_variables):
start_idx = i * num_locations
end_idx = start_idx + num_locations
value_time[start_idx:end_idx] = start_datetime + pd.to_timedelta(timesteps[i] * dt, unit='s')
variable_name = variable_to_name_map[variables[i]]
unit = variable_to_units_map[variable_name]
variable_names[start_idx:end_idx] = variable_name
units[start_idx:end_idx] = unit
values[start_idx:end_idx] = df.iloc[:, i + 1].values

# Create the resulting DataFrame
timeseries_df = pd.DataFrame({
'location_id': location_ids_repeated,
'value': values,
'value_time': value_time,
'variable_name': variable_names,
'units': units,
'reference_time': start_datetime.date(),
'configuration': configuration
})

return timeseries_df


Expand Down
Loading