Skip to content

Latest commit

 

History

History
executable file
·
1265 lines (932 loc) · 59.8 KB

hugectr_layer_book.md

File metadata and controls

executable file
·
1265 lines (932 loc) · 59.8 KB

HugeCTR Layer Classes and Methods

---
depth: 2
local: true
backlinks: none
---

This document introduces different layer classes and corresponding methods in the Python API of HugeCTR. The description of each method includes its functionality, arguments, and examples of usage.

Input Layer

hugectr.Input()

Input layer specifies the parameters related to the data input. Input layer should be added to the Model instance first so that the following SparseEmbedding and DenseLayer instances can access the inputs with their specified names.

Arguments

  • label_dim: Integer, the label dimension. 1 implies it is a binary label. For example, if an item is clicked or not. There is NO default value and it should be specified by users.

  • label_name: String, the name of the label tensor to be referenced by following layers. There is NO default value and it should be specified by users.

  • dense_dim: Integer, the number of dense (or continuous) features. If there is no dense feature, set it to 0. There is NO default value and it should be specified by users.

  • dense_name: Integer, the name of the dense input tensor to be referenced by following layers. There is NO default value and it should be specified by users.

  • data_reader_sparse_param_array: List[hugectr.DataReaderSparseParam], the list of the sparse parameters for categorical inputs. Each DataReaderSparseParam instance should be constructed with sparse_name, nnz_per_slot, is_fixed_length and slot_num.

    • sparse_name is the name of the sparse input tensors to be referenced by following layers. There is NO default value and it should be specified by users.
    • nnz_per_slot is the maximum hotness for input sparse features and is used by data reader. The nnz_per_slot can be an int which will apply on every slot. It could be convenient if all slots have the same hotness. Or one can use List[int] to initialize nnz_per_slot when hotness of slots differs, in which case the length of the array nnz_per_slot should be identical to slot_num. Note that for RawAsync data reader, only static hotness is support. This parameter has no impact on Parquet and Raw data reader.
    • is_fixed_length is used to identify whether categorical inputs has the same length for each slot among all samples. If different samples have the same number of features for each slot, then user can set is_fixed_length = True and HugeCTR can use this information to reduce data transferring time.
    • slot_num specifies the number of slots used for this sparse input in the dataset.

Example:

model.add(hugectr.Input(label_dim = 1, label_name = "label",
                        dense_dim = 13, dense_name = "dense",
                        data_reader_sparse_param_array =
                            [hugectr.DataReaderSparseParam("data1", 1, True, 26)]))
model.add(hugectr.Input(label_dim = 1, label_name = "label",
                        dense_dim = 13, dense_name = "dense",
                        data_reader_sparse_param_array =
                            [hugectr.DataReaderSparseParam("wide_data", 2, True, 2),
                            hugectr.DataReaderSparseParam("deep_data", 2, True, 26)]))

Sparse Embedding

SparseEmbedding class

hugectr.SparseEmbedding()

SparseEmbedding specifies the parameters related to the sparse embedding layer. One or several SparseEmbedding layers should be added to the Model instance after Input and before DenseLayer.

Arguments

  • embedding_type: The embedding type. Specify one of the following values:

    • hugectr.Embedding_t.DistributedSlotSparseEmbeddingHash
    • hugectr.Embedding_t.LocalizedSlotSparseEmbeddingHash
    • hugectr.Embedding_t.LocalizedSlotSparseEmbeddingOneHot

    For information about the different embedding types, see Embedding Types Detail. This argument does not have a default value. You must specify a value.

  • workspace_size_per_gpu_in_mb: Integer, the workspace memory size in megabyte per GPU. This workspace memory must be big enough to hold all the embedding vocabulary and its corresponding optimizer state that is used during the training and evaluation. To understand how to set this value, see How to set workspace_size_per_gpu_in_mb and slot_size_array. This argument does not have a default value. You must specify a value.

  • embedding_vec_size: Integer, the embedding vector size. This argument does not have a default value. You must specify a value.

  • combiner: String, the intra-slot reduction operation. Specify sum or mean. This argument does not have a default value. You must specify a value.

  • sparse_embedding_name: String, the name of the sparse embedding tensor. This name is referenced by the following layers. This argument does not have a default value. You must specify a value.

  • bottom_name: String, the number of the bottom tensor to consume with this sparse embedding layer. Please note that the value should be a predefined sparse input name. This argument does not have a default value. You must specify a value.

  • slot_size_array: List[int], specify the maximum key value from each slot. It should be consistent with that of the sparse input. This parameter is used in LocalizedSlotSparseEmbeddingHash and LocalizedSlotSparseEmbeddingOneHot. The value you specify can help avoid wasting memory that is caused by an imbalanced vocabulary size. For more information, see How to set workspace_size_per_gpu_in_mb and slot_size_array. This argument does not have a default value. You must specify a value.

  • optimizer: OptParamsPy, the optimizer that is dedicated to this sparse embedding layer. If you do not specify the optimizer for the sparse embedding, the sparse embedding layer adopts the same optimizer as dense layers.

Embedding Types Detail

DistributedSlotSparseEmbeddingHash Layer

The DistributedSlotSparseEmbeddingHash stores embeddings in an embedding table and gets them by using a set of integers or indices. The embedding table can be segmented into multiple slots or feature fields, which spans multiple GPUs and nodes. With DistributedSlotSparseEmbeddingHash, each GPU will have a portion of a slot. This type of embedding is useful when there's an existing load imbalance among slots and OOM issues.

Important Notes:

  • In a single embedding layer, it is assumed that input integers represent unique feature IDs, which are mapped to unique embedding vectors. All the embedding vectors in a single embedding layer must have the same size. If you want some input categorical features to have different embedding vector sizes, use multiple embedding layers.
  • The input indices’ data type, input_key_type, is specified in the solver. By default, the 32-bit integer (I32) is used, but the 64-bit integer type (I64) is also allowed even if it is constrained by the dataset type. For additional information, see Solver.
  • The DistributedSlotSparseEmbeddingHash Layer performs overflow checking in every iteration by default to verify if the number of inserted keys is beyond the size set by workspace_size_per_gpu_in_mb. However, this can negatively impact performance when the table is large. If user are confident that there will be no overflow, you can disable overflow checking by setting the environment variable HUGECTR_DISABLE_OVERFLOW_CHECK=1.

Example:

model.add(hugectr.SparseEmbedding(
            embedding_type = hugectr.Embedding_t.DistributedSlotSparseEmbeddingHash,
            workspace_size_per_gpu_in_mb = 23,
            embedding_vec_size = 1,
            combiner = 'sum',
            sparse_embedding_name = "sparse_embedding1",
            bottom_name = "input_data",
            optimizer = optimizer))

LocalizedSlotSparseEmbeddingHash Layer

The LocalizedSlotSparseEmbeddingHash layer to store embeddings in an embedding table and get them by using a set of integers or indices. The embedding table can be segmented into multiple slots or feature fields, which spans multiple GPUs and nodes. Unlike the DistributedSlotSparseEmbeddingHash layer, with this type of embedding layer, each individual slot is located in each GPU and not shared. This type of embedding layer provides the best scalability.

Important Notes:

  • In a single embedding layer, it is assumed that input integers represent unique feature IDs, which are mapped to unique embedding vectors. All the embedding vectors in a single embedding layer must have the same size. If you want some input categorical features to have different embedding vector sizes, use multiple embedding layers.
  • The input indices’ data type, input_key_type, is specified in the solver. By default, the 32-bit integer (I32) is used, but the 64-bit integer type (I64) is also allowed even if it is constrained by the dataset type. For additional information, see Solver.
  • The LocalizedSlotSparseEmbeddingHash Layer performs overflow checking in every iteration by default to verify if the number of inserted keys is beyond the size set by workspace_size_per_gpu_in_mb or slot_size_array. However, this can negatively impact performance when the table is large. If user are confident that there will be no overflow, you can disable overflow checking by setting the environment variable HUGECTR_DISABLE_OVERFLOW_CHECK=1.

Example:

model.add(hugectr.SparseEmbedding(
            embedding_type = hugectr.Embedding_t.LocalizedSlotSparseEmbeddingHash,
            workspace_size_per_gpu_in_mb = 23,
            embedding_vec_size = 1,
            combiner = 'sum',
            sparse_embedding_name = "sparse_embedding1",
            bottom_name = "input_data",
            optimizer = optimizer))

LocalizedSlotSparseEmbeddingOneHot Layer

The LocalizedSlotSparseEmbeddingOneHot layer stores embeddings in an embedding table and gets them by using a set of integers or indices. The embedding table can be segmented into multiple slots or feature fields, which spans multiple GPUs and nodes. This is a performance-optimized version of LocalizedSlotSparseEmbeddingHash for the case where NVSwitch is available and inputs are one-hot categorical features.

Note: LocalizedSlotSparseEmbeddingOneHot can only be used together with the Raw dataset format. Unlike other types of embeddings, LocalizedSlotSparseEmbeddingOneHot only supports single-node training and can be used only in a NVSwitch equipped system such as DGX-2 and DGX A100. The input indices’ data type, input_key_type, is specified in the solver. By default, the 32-bit integer (I32) is used, but the 64-bit integer type (I64) is also allowed even if it is constrained by the dataset type. For additional information, see Solver.

Example:

model.add(hugectr.SparseEmbedding(
            embedding_type = hugectr.Embedding_t.LocalizedSlotSparseEmbeddingOneHot,
            slot_size_array = [1221, 754, 8, 4, 12, 49, 2]
            embedding_vec_size = 128,
            combiner = 'sum',
            sparse_embedding_name = "sparse_embedding1",
            bottom_name = "input_data",
            optimizer = optimizer))

Dense Layers

DenseLayer class

hugectr.DenseLayer()

DenseLayer specifies the parameters related to the dense layer or the loss function. HugeCTR currently supports multiple dense layers and loss functions. Please NOTE that the final sigmoid function is fused with the loss function to better utilize memory bandwidth.

Arguments

  • layer_type: The layer type to be used. The supported types include hugectr.Layer_t.Add, hugectr.Layer_t.BatchNorm, hugectr.Layer_t.Cast, hugectr.Layer_t.Concat, hugectr.Layer_t.Dropout, hugectr.Layer_t.ELU, hugectr.Layer_t.FmOrder2, hugectr.Layer_t.InnerProduct, hugectr.Layer_t.MLP, hugectr.Layer_t.Interaction, hugectr.Layer_t.MultiCross, hugectr.Layer_t.ReLU, hugectr.Layer_t.ReduceSum, hugectr.Layer_t.Reshape, hugectr.Layer_t.Select, hugectr.Layer_t.Sigmoid, hugectr.Layer_t.Slice, hugectr.Layer_t.WeightMultiply, hugectr.Layer_t.ElementwiseMultiply, hugectr.Layer_t.GRU, hugectr.Layer_t.Scale, hugectr.Layer_t.FusedReshapeConcat, hugectr.Layer_t.FusedReshapeConcatGeneral, hugectr.Layer_t.Softmax, hugectr.Layer_t.PReLU_Dice, hugectr.Layer_t.ReduceMean, hugectr.Layer_t.Sub, hugectr.Layer_t.Gather, hugectr.Layer_t.BinaryCrossEntropyLoss, hugectr.Layer_t.CrossEntropyLoss and hugectr.Layer_t.MultiCrossEntropyLoss. There is NO default value and it should be specified by users.

  • bottom_names: List[str], the list of bottom tensor names to be consumed by this dense layer. Each name in the list should be the predefined tensor name. There is NO default value and it should be specified by users.

  • top_names: List[str], the list of top tensor names, which specify the output tensors of this dense layer. There is NO default value and it should be specified by users.

  • For details about the usage of each layer type and its parameters, please refer to Dense Layers Usage.

Dense Layers Usage

FullyConnected Layer

The FullyConnected layer is a densely connected layer (or MLP layer). It is usually made of a InnerProduct layer and a ReLU.

Parameters:

  • num_output: Integer, the number of output elements for the InnerProduct layer. The default value is 1.
  • weight_init_type: Specifies how to initialize the weight array. The supported types include hugectr.Initializer_t.Default, hugectr.Initializer_t.Uniform, hugectr.Initializer_t.XavierNorm, hugectr.Initializer_t.XavierUniform and hugectr.Initializer_t.Zero. The default value is hugectr.Initializer_t.Default.
  • bias_init_type: Specifies how to initialize the bias array for the InnerProduct or MultiCross layer. The supported types include hugectr.Initializer_t.Default, hugectr.Initializer_t.Uniform, hugectr.Initializer_t.XavierNorm, hugectr.Initializer_t.XavierUniform and hugectr.Initializer_t.Zero. The default value is hugectr.Initializer_t.Default.

Input and Output Shapes:

  • input: (batch_size, *) where * represents any number of elements
  • output: (batch_size, num_output)

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.InnerProduct,
                            bottom_names = ["relu1"],
                            top_names = ["fc2"],
                            num_output=1024))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.ReLU,
                            bottom_names = ["fc2"],
                            top_names = ["relu2"]))

MLP Layer

The MLP layer is comprised of multiple fused fully-connected layers. The MLP layer supports FP16, FP32, and TF32.

Arguments

  • num_outputs: List[Integer], specifies the number of output elements for each fused fully-connected layer in the MLP. There is NO default value and it should be specified by users.

  • act_type: The activation type of the MLP layer. This argument is applied to all layers in the MLP. The supported types include Activation_t.Relu and Activation_t.Non. The default value is Activation_t.Relu.

  • use_bias: Boolean, whether to use bias. This argument is applied to all layers in the MLP. The default value is True.

  • activations: List[Activation_t], specifies the activation type for each layer in the MLP. This argument overrides the act_type argument.

  • biases: List[Boolean], specifies for each layer in the MLP Layer whether to use bias. This argument overrides the use_bias argument.

  • weight_init_type: Specifies how to initialize the weight array of all layers in the MLP. The supported types include hugectr.Initializer_t.Default, hugectr.Initializer_t.Uniform, hugectr.Initializer_t.XavierNorm, hugectr.Initializer_t.XavierUniform and hugectr.Initializer_t.Zero. The default value is hugectr.Initializer_t.Default.

  • bias_init_type: Specifies how to initialize the bias array of all layers in the MLP. The supported types include hugectr.Initializer_t.Default, hugectr.Initializer_t.Uniform, hugectr.Initializer_t.XavierNorm, hugectr.Initializer_t.XavierUniform and hugectr.Initializer_t.Zero. The default value is hugectr.Initializer_t.Default.

  • compute_config: hugectr.DenseLayerComputeConfig, specifies the computation configuration of all layers in the MLP. For MLP, the valid flags in compute_config are hugectr.DenseLayerComputeConfig.async_wgrad and hugectr.DenseLayerComputeConfig.fuse_wb.

    • hugectr.DenseLayerComputeConfig.async_wgrad: Specifies whether the wgrad compute is asynchronous to dgrad. The default value is False.
    • hugectr.DenseLayerComputeConfig.fuse_wb: Specifies whether to fuse wgrad with bgrad. The default value is False.
  • input: (batch_size, *) where * represents any number of elements

  • output: (batch_size, num_output of the last layer)

Example:

compute_config_bottom = hugectr.DenseLayerComputeConfig(
    async_wgrad=True,
    fuse_wb=False,
)

compute_config_top = hugectr.DenseLayerComputeConfig(
    async_wgrad=True,
    fuse_wb=True,
)

model.add(
    hugectr.DenseLayer(
        layer_type=hugectr.Layer_t.MLP,
        bottom_names=["dense"],
        top_names=["mlp1"],
        num_outputs=[512, 256, 128],
        act_type=hugectr.Activation_t.Relu,
        use_bias=True,
        compute_config=compute_config_bottom,
    )
)

model.add(
    hugectr.DenseLayer(
        layer_type=hugectr.Layer_t.Interaction,
        bottom_names=["mlp1", "sparse_embedding1"],
        top_names=["interaction1", "interaction_grad"],
    )
)

model.add(
    hugectr.DenseLayer(
        layer_type=hugectr.Layer_t.MLP,
        bottom_names=["interaction1", "interaction_grad"],
        top_names=["mlp2"],
        num_outputs=[1024, 1024, 512, 256, 1],
        activations=[
            hugectr.Activation_t.Relu,
            hugectr.Activation_t.Relu,
            hugectr.Activation_t.Relu,
            hugectr.Activation_t.Relu,
            hugectr.Activation_t.Non,
        ],
        biases = [True, True, True, True, True],
        compute_config=compute_config_top,
    )
)

model.add(
    hugectr.DenseLayer(
        layer_type=hugectr.Layer_t.BinaryCrossEntropyLoss,
        bottom_names=["mlp2", "label"],
        top_names=["loss"],
    )
)

MultiCross Layer

The MultiCross layer is a cross network where explicit feature crossing is applied across cross layers. There are two versions of cross network which are invented in DCN v1 and DCN v2 respectively.

Suppose the dimension of features to be interacted is $n$, the mathematical formulas of feature crossing for those two versions are:

DCN v1 : $$ x_{l+1}=x_{0}x^{T}{l}w{l}+b_l+x_l $$

where $ w_l, b_l \in \mathbb{R}^{n\times1}$ are learnable parameter, $x_{l},x_0$ are input and $x_{l+1}$ is output.

DCN v2 : $$ x_{l+1}=x_{0}\odot (\mathbf{W}{l} x{l}+b_l )+x_l $$

where $ \odot $ represents elementwise dot, $\mathbf{W}l \in \mathbb{R}^{n\times n}, b_l \in \mathbb{R}^{n\times 1 }$ are learnable parameter, $x{l},x_0$ are input and $x_{l+1}$ is output.

To decrease the computation complexity, $\mathbf{W}_l$ can be approximately factorized into multiplication of two lower rank matrices $\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times n}$, where $k$ is a so-called projection dimension. Correspondingly the formula evolves and can be expressed as follows:

$$ x_{l+1}=x_{0}\odot (\mathbf{U}{l} \mathbf{V}{l} x_{l}+b_l )+x_l $$

Parameters:

  • num_layers: Integer, number of cross layers in the cross network. It should be set as a positive number if you want to use the cross network. The default value is 0.
  • projection_dim: Integer, the projection dimension for DCN v2. If you specify 0, the layer degrades to DCN v1. The default value is 0.
  • weight_init_type: Specifies how to initialize the weight array. The supported types include hugectr.Initializer_t.Default, hugectr.Initializer_t.Uniform, hugectr.Initializer_t.XavierNorm, hugectr.Initializer_t.XavierUniform and hugectr.Initializer_t.Zero. The default value is hugectr.Initializer_t.Default.
  • bias_init_type: Specifies how to initialize the bias array. The supported types include hugectr.Initializer_t.Default, hugectr.Initializer_t.Uniform, hugectr.Initializer_t.XavierNorm, hugectr.Initializer_t.XavierUniform and hugectr.Initializer_t.Zero. The default value is hugectr.Initializer_t.Default.
  • compute_config: hugectr.DenseLayerComputeConfig, specifies the computation configuration of all layers in the cross network. The valid flags in compute_config is hugectr.DenseLayerComputeConfig.async_wgrad and applies only to DCN v2.
    • hugectr.DenseLayerComputeConfig.async_wgrad: Specifies whether the wgrad compute is asynchronous to dgrad. The default value is False.

Input and Output Shapes:

  • input: (batch_size, *) where * represents any number of elements
  • output: same as input

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.MultiCross,
                            bottom_names = ["slice11"],
                            top_names = ["multicross1"],
                            num_layers=6,
                            projection_dim=512))

FmOrder2 Layer

TheFmOrder2 layer is the second-order factorization machine (FM), which models linear and pairwise interactions as dot products of latent vectors.

Parameters:

  • out_dim: Integer, the output vector size. It should be set as a positive number if you want to use factorization machine. The default value is 0.

Input and Output Shapes:

  • input: (batch_size, *) where * represents any number of elements
  • output: (batch_size, out_dim)

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.FmOrder2,
                            bottom_names = ["slice32"],
                            top_names = ["fmorder2"],
                            out_dim=10))

WeightMultiply Layer

The Multiply Layer maps input elements into a latent vector space by multiplying each feature with a corresponding weight vector.

Parameters:

  • weight_dims: List[Integer], the shape of the weight matrix (slot_dim, vec_dim) where vec_dim corresponds to the latent vector length for the WeightMultiply layer. It should be set correctly if you want to employ the weight multiplication. The default value is [].
  • weight_init_type: Specifies how to initialize the weight array. The supported types include hugectr.Initializer_t.Default, hugectr.Initializer_t.Uniform, hugectr.Initializer_t.XavierNorm, hugectr.Initializer_t.XavierUniform and hugectr.Initializer_t.Zero. The default value is hugectr.Initializer_t.Default.

Input and Output Shapes:

  • input: (batch_size, slot_dim) where slot_dim represents the number of input features
  • output: (batch_size, slot_dim * vec_dim)

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.WeightMultiply,
                            bottom_names = ["slice32"],
                            top_names = ["fmorder2"],
                            weight_dims = [13, 10]),
                            weight_init_type = hugectr.Initializer_t.XavierUniform)

ElementwiseMultiply Layer

The ElementwiseMultiply Layer maps two inputs into a single resulting vector by performing an element-wise multiplication of the two inputs.

Parameters: None

Input and Output Shapes:

  • input: 2x(batch_size, num_elem)
  • output: (batch_size, num_elem)

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.ElementwiseMultiply,
                            bottom_names = ["slice1","slice2"],
                            top_names = ["eltmultiply1"])

BatchNorm Layer

The BatchNorm layer implements a cuDNN based batch normalization.

Parameters:

  • factor: Float, exponential average factor such as runningMean = runningMean*(1-factor) + newMean*factor for the BatchNorm layer. The default value is 1.
  • eps: Float, epsilon value used in the batch normalization formula for the BatchNorm layer. The default value is 1e-5.
  • gamma_init_type: Specifies how to initialize the gamma (or scale) array for the BatchNorm layer. The supported types include hugectr.Initializer_t.Default, hugectr.Initializer_t.Uniform, hugectr.Initializer_t.XavierNorm, hugectr.Initializer_t.XavierUniform and hugectr.Initializer_t.Zero. The default value is hugectr.Initializer_t.Default.
  • beta_init_type: Specifies how to initialize the beta (or offset) array for the BatchNorm layer. The supported types include hugectr.Initializer_t.Default, hugectr.Initializer_t.Uniform, hugectr.Initializer_t.XavierNorm, hugectr.Initializer_t.XavierUniform and hugectr.Initializer_t.Zero. The default value is hugectr.Initializer_t.Default.

Input and Output Shapes:

  • input: (batch_size, num_elem)
  • output: same as input

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.BatchNorm,
                            bottom_names = ["slice32"],
                            top_names = ["fmorder2"],
                            factor = 1.0,
                            eps = 0.00001,
                            gamma_init_type = hugectr.Initializer_t.XavierUniform,
                            beta_init_type = hugectr.Initializer_t.XavierUniform)

When training a model, each BatchNorm layer stores mean and variance in a JSON file using the following format: “snapshot_prefix” + “dense” + str(iter) + ”.model”

Example: my_snapshot_dense_5000.model

In the JSON file, you can find the batch norm parameters as shown below:

    {
      "layers": [
        {
          "type": "BatchNorm",
          "mean": [-0.192325, 0.003050, -0.323447, -0.034817, -0.091861],
          "var": [0.738942, 0.410794, 1.370279, 1.156337, 0.638146]
        },
        {
          "type": "BatchNorm",
          "mean": [-0.759954, 0.251507, -0.648882, -0.176316, 0.515163],
          "var": [1.434012, 1.422724, 1.001451, 1.756962, 1.126412]
        },
        {
          "type": "BatchNorm",
          "mean": [0.851878, -0.837513, -0.694674, 0.791046, -0.849544],
          "var": [1.694500, 5.405566, 4.211646, 1.936811, 5.659098]
        }
      ]
    }

LayerNorm Layer

The LayerNorm layer implements a layer normalization.

Parameters:

  • eps: Float, epsilon value used in the batch normalization formula for the LayerNorm layer. The default value is 1e-5.
  • gamma_init_type: Specifies how to initialize the gamma (or scale) array for the LayerNorm layer. The supported types include hugectr.Initializer_t.Default, hugectr.Initializer_t.Uniform, hugectr.Initializer_t.XavierNorm, hugectr.Initializer_t.XavierUniform and hugectr.Initializer_t.Zero. The default value is hugectr.Initializer_t.Default.
  • beta_init_type: Specifies how to initialize the beta (or offset) array for the LayerNorm layer. The supported types include hugectr.Initializer_t.Default, hugectr.Initializer_t.Uniform, hugectr.Initializer_t.XavierNorm, hugectr.Initializer_t.XavierUniform and hugectr.Initializer_t.Zero. The default value is hugectr.Initializer_t.Default.

Input and Output Shapes:

  • input: 2D: (batch_size, num_elem), 3D: (batch_size, seq_len, num_elem), 4D: (batch_size, num_attention_heads, seq_len, num_elem)
  • output: same as input

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.LayerNorm,
                            bottom_names = ["slice32"],
                            top_names = ["fmorder2"],
                            eps = 0.00001,
                            gamma_init_type = hugectr.Initializer_t.XavierUniform,
                            beta_init_type = hugectr.Initializer_t.XavierUniform))

Concat Layer

The Concat layer concatenates a list of inputs.

Parameters:

  • axis: Integer, the dimension to concat for the Concat layer. If the input is N-dimensional, 0 <= axis < N. The default value is 1.

Input and Output Shapes:

  • input: 3D: {(batch_size, num_feas_0, num_elems_0), (batch_size, num_feas + 1, num_elems_1), ...} or 2D: {(batch_size, num_elems_0), (batch_size, num_elems_1), ...}
  • output: 3D and axis=1: (batch_size, num_feas_0+num_feas_1+..., num_elems). 3D and axis=2: (batch_size, num_feas, num_elems_0+num_elems_1+...). 2D: (batch_size, num_elems_0+num_elems_1+...)

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Concat,
                            bottom_names = ["reshape3","weight_multiply2"],
                            top_names = ["concat2"],
                            axis = 2))

Reshape Layer

The Reshape layer reshapes a 3D input tensor into 2D shape.

Parameter:

  • leading_dim: Integer, the innermost dimension of the output tensor. It must be the multiple of the total number of input elements. If it is unspecified, n_slots * num_elems (see below) is used as the default leading_dim.
  • time_step: Integer, the second dimension of the 3D output tensor. It must be the multiple of the total number of input elements and must be defined with leading_dim.
  • selected: Boolean, whether to use the selected mode for the Reshape layer. The default value is False.
  • selected_slots: List[int], the selected slots for the Reshape layer. It will be ignored if selected is False. The default value is [].
  • shape: List of Integer, the destination shape of output. You can use -1 as a placeholder for dimensions that are variable, such as batch size. This parameter cannot be used together with other parameters and other parameters will be deprecated in the future. This parameter does not restrict dimensions.

Input and Output Shapes:

  • input: (batch_size, n_slots, num_elems)
  • output: (tailing_dim, leading_dim) where tailing_dim is batch_size * n_slots * num_elems / leading_dim

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Reshape,
                            bottom_names = ["sparse_embedding1"],
                            top_names = ["reshape1"],
                            leading_dim=416))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Reshape,
                             bottom_names = ["sparse_embedding1"],
                             top_names = ["reshape1"],
                             shape = [-1, 32, 128]))

Select Layer

The Select layer can be used to select some index from a dimension.

Parameter:

  • dim: Integer, the dimension user want to do select.
  • index: List of Integer, the index user want to select from the specified dimension.

Input and Output Shapes:

  • input: any shape
  • output: depending on the parameter dim and index

Example:

# if the shape of "sparse_embedding1" is (batch_size, 10, 128) the shape of "select1" will be (batch_size, 2, 128).
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Selcte,
                            bottom_names = ["sparse_embedding1"],
                            top_names = ["select1"],
                            dim = 1,
                            index = [2, 4]))

Slice Layer

The Slice layer extracts multiple output tensors from input tensors.

Parameter:

  • ranges: List[Tuple[int, int]], used for the Slice layer. A list of tuples in which each one represents a range in the input tensor to generate the corresponding output tensor. For example, (2, 8) indicates that 6 elements starting from the second element in the input tensor are used to create an output tensor. Note that the start index is inclusive and the end index is exclusive. The number of tuples corresponds to the number of output tensors. Ranges are allowed to overlap unless it is a reverse or negative range. The default value is []. The input tensors are sliced along the last dimension.

Input and Output Shapes:

  • input: (batch_size, num_elems)
  • output: {(batch_size, b-a), (batch_size, d-c), ....) where ranges ={[a, b), [c, d), …} and len(ranges) <= 5

Example:

You can apply the Slice layer to actually slicing a tensor. In this case, it must be explicitly added with Python API.

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Slice,
                            bottom_names = ["dense"],
                            top_names = ["slice21", "slice22"],
                            ranges=[(0,10),(10,13)]))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.WeightMultiply,
                            bottom_names = ["slice21"],
                            top_names = ["weight_multiply1"],
                            weight_dims= [10,10]))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.WeightMultiply,
                            bottom_names = ["slice22"],
                            top_names = ["weight_multiply2"],
                            weight_dims= [3,1]))

The Slice layer can also be employed to create copies of a tensor, which helps to express a branch topology in your model graph.

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Slice,
                            bottom_names = ["dense"],
                            top_names = ["slice21", "slice22"],
                            ranges=[(0,13),(0,13)]))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.WeightMultiply,
                            bottom_names = ["slice21"],
                            top_names = ["weight_multiply1"],
                            weight_dims= [13,10]))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.WeightMultiply,
                            bottom_names = ["slice22"],
                            top_names = ["weight_multiply2"],
                            weight_dims= [13,1]))

From HugeCTR v.3.3, the aforementioned, Slice layer based branching can be abstracted away. When the same tensor is referenced multiple times in constructing a model in Python, the HugeCTR parser can internally add a Slice layer to handle such a situation. Thus, the example below behaves as the same as the one above whilst simplifying the code.

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.WeightMultiply,
                            bottom_names = ["dense"],
                            top_names = ["weight_multiply1"],
                            weight_dims= [13,10]))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.WeightMultiply,
                            bottom_names = ["dense"],
                            top_names = ["weight_multiply2"],
                            weight_dims= [13,1]))

Dropout Layer

The Dropout layer randomly zeroizes or drops some of the input elements.

Parameter:

  • dropout_rate: Float, The dropout rate to be used for the Dropout layer. It should be between 0 and 1. Setting it to 0 indicates that there is no dropped element at all. The default value is 0.5.

Input and Output Shapes:

  • input: (batch_size, num_elems)
  • output: same as input

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Dropout,
                            bottom_names = ["relu1"],
                            top_names = ["dropout1"],
                            dropout_rate=0.5))

ELU Layer

The ELU layer represents the Exponential Linear Unit.

Parameter:

  • elu_alpha: Float, the scalar that decides the value where this ELU function saturates for negative values. The default value is 1.

Input and Output Shapes:

  • input: (batch_size, *) where * represents any number of elements
  • output: same as input

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.ELU,
                            bottom_names = ["fc1"],
                            top_names = ["elu1"],
                            elu_alpha=1.0))

ReLU Layer

The ReLU layer represents the Rectified Linear Unit.

Input and Output Shapes:

  • input: (batch_size, *) where * represents any number of elements
  • output: same as input

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.ReLU,
                            bottom_names = ["fc1"],
                            top_names = ["relu1"]))

Sigmoid Layer

The Sigmoid layer represents the Sigmoid Unit.

Input and Output Shapes:

  • input: (batch_size, *) where * represents any number of elements
  • output: same as input

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Sigmoid,
                            bottom_names = ["fc1"],
                            top_names = ["sigmoid1"]))

Note: The final sigmoid function is fused with the loss function to better utilize memory bandwidth, so do NOT add a Sigmoid layer before the loss layer.

Interaction Layer

The interaction layer is used to explicitly capture second-order interactions between features.

Parameters: None

Input and Output Shapes:

  • input: {(batch_size, num_elems), (batch_size, num_feas, num_elems)} where the first tensor typically represents a fully connected layer and the second is an embedding.
  • output: (batch_size, output_dim) where output_dim = num_elems + (num_feas + 1) * (num_feas + 2 ) / 2 - (num_feas + 1) + 1

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Interaction,
                            bottom_names = ["layer1", "layer3"],
                            top_names = ["interaction1"]))

Important Notes: There are optimizations that can be employed on the Interaction layer and the following MLP layer during fp16 training. In this case, you should specify two output tensor names for the Interaction layer, and use them as the input tensors for the following MLP layer. Please refer to the example of MLP layer for the detailed usage.

Add Layer

The Add layer adds up an arbitrary number of tensors that have the same size in an element-wise manner.

Parameters: None

Input and Output Shapes:

  • input: Nx(batch_size, num_elems) where N is the number of input tensors
  • output: (batch_size, num_elems)

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Add,
                            bottom_names = ["fc4", "reducesum1", "reducesum2"],
                            top_names = ["add"]))

ReduceSum Layer

The ReduceSum Layer sums up all the elements across a specified dimension.

Parameter:

  • axis: Integer, the dimension to reduce for the ReduceSum layer. If the input is N-dimensional, 0 <= axis < N. The default value is 1.

Input and Output Shapes:

  • input: (batch_size, ...) where ... represents any number of elements with an arbitrary number of dimensions
  • output: Dimension corresponding to axis is set to 1. The others remain the same as the input.

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.ReduceSum,
                            bottom_names = ["fmorder2"],
                            top_names = ["reducesum1"],
                            axis=1))

GRU Layer

The GRU layer is Gated Recurrent Unit.

Parameters:

  • num_output: Number of output elements.
  • batchsize: Number of batchsize.
  • SeqLength: Length of the sequence.
  • vector_size: size of the input vector.
  • weight_init_type: Specifies how to initialize the weight array. The supported types include hugectr.Initializer_t.Default, hugectr.Initializer_t.Uniform, hugectr.Initializer_t.XavierNorm, hugectr.Initializer_t.XavierUniform and hugectr.Initializer_t.Zero. The default value is hugectr.Initializer_t.Default.
  • bias_init_type: Specifies how to initialize the bias array. The supported types include hugectr.Initializer_t.Default, hugectr.Initializer_t.Uniform, hugectr.Initializer_t.XavierNorm, hugectr.Initializer_t.XavierUniform and hugectr.Initializer_t.Zero. The default value is hugectr.Initializer_t.Default.

Input and Output Shapes:

  • input: (1, batch_sizeSeqLengthembedding_vec_size)
  • output: (1, batch_sizeSeqLengthembedding_vec_size)

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.GRU,
                            bottom_names = ["GRU1"],
                            top_names = ["conncat1"],
                            num_output=256,
                            batchsize=13,
                            SeqLength=20,
                            vector_size=20))

PReLUDice Layer

The PReLUDice layer represents the Parametric Rectified Linear Unit, which adaptively adjusts the rectified point according to distribution of input data.

Parameters:

  • elu_alpha: A scalar that decides the value where this activation function saturates for negative values.
  • eps: Epsilon value used in the PReLU/Dice formula.

Input and Output Shapes:

  • input: (batch_size, *) where * represents any number of elements
  • output: same as input

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.PReLU_Dice,
                            bottom_names = ["fc_din_i1"],
                            top_names = ["dice_1"],
                            elu_alpha=0.2, eps=1e-8))

Scale Layer

The Scale layer scales the input 2D tensor to specific size on the designate axis.

Parameters:

  • axis: Along the designate axis to scale the tensor. The designate axis could be axis 0, 1.
  • factor : scale factor.

Input and Output Shapes:

  • input: (batch_size, num_elems)
  • output: if axis = 0; (batch_size, num_elems * factor), if axis = 1; (batch_size * factor, num_elems)

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Scale,
                            bottom_names = ["item1"],
                            top_names = ["Scale_item"],
                            axis = 1, factor = 10))

FusedReshapeConcat Layer

The FusedReshapeConcat layer cross combines the input tensors and outputs item tensor, AD tensor.

Parameters: None

Input and Output Shapes:

  • input: {(batch_size, num_feas + 1, num_elems_0), (batch_size, num_feas + 1, num_elems_1), ...}, the input tensors are embeddings.
  • output: {(batch_size x num_feas, (num_elems_0 + num_elems_1 + ...)), (batch_size, (num_elems_0 + num_elems_1 + ...))}.

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.FusedReshapeConcat,
                            bottom_names = ["sparse_embedding_good", "sparse_embedding_cate"],
                            top_names = ["FusedReshapeConcat_item_his_em", "FusedReshapeConcat_item"]))

FusedReshapeConcatGeneral Layer

The FusedReshapeConcatGeneral layer cross combines the input tensors and outputs item tensor, AD tensor.

Parameters: None

Input and Output Shapes:

  • input: {(batch_size, num_feas, num_elems_0), (batch_size, num_feas, num_elems_1), ...}, the input tensors are embeddings.
  • output: (batch_size x num_feas, (num_elems_0 + num_elems_1 + ...)).

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.FusedReshapeConcatGeneral,
                            bottom_names = ["sparse_embedding_good", "sparse_embedding_cate"],
                            top_names = ["FusedReshapeConcat_item_his_em"]))

Softmax Layer

The Softmax layer computes softmax activations. When the softmax layer accept two inputs tensors, the first one is the tensor need to do softmax and the other one is mask which mask some positions of the first tensor (setting them to -10000) before the softmax step.

Parameter: None

Input and Output Shapes:

  • input: (batch_size, num_elems)

  • output: same as input

  • input: (batch_size, num_attention_heads, seq_len, seq_len) (batch_size, 1, 1, seq_len)

  • output: same as input

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Softmax,
                            bottom_names = ["reshape1"],
                            top_names = ["softmax_i"]))

Sub Layer

Inputs: x tensor, y tensor in same size. Produce x - y in element wise manner.

Parameters: None

Input and Output Shapes:

  • input: Nx(batch_size, num_elems) where N is the number of input tensors
  • output: (batch_size, num_elems)

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Sub,
                            bottom_names = ["Scale_item1", "item_his1"],
                            top_names = ["sub_ih"]))

ReduceMean Layer

The ReduceMean Layer computes the mean of elements across a specified dimension.

Parameter:

  • axis: The dimension to reduce. If the input is N-dimensional, 0 <= axis < N.

Input and Output Shapes:

  • input: (batch_size, ...) where ... represents any number of elements with an arbitrary number of dimensions
  • output: Dimension corresponding to axis is set to 1. The others remain the same as the input.

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.ReduceMean,
                            bottom_names = ["fmorder2"],
                            top_names = ["reducemean1"],
                            axis=1))

MatrixMutiply Layer

The MatrixMutiply Layer is a binary operation that produces a matrix output from two matrix inputs by performing matrix mutiplication.

Parameters: None

Input and Output Shapes:

There are following shape configuration supported

  • input: 2D x 2D (m, n)x(n, k) and the output will be 2D (m,k)
  • input: 3D x 3D (batch_size, m, n)x(batch_size, n, k) and the output will be 3D (batch_size, m, k)
  • input: 2D x 3D (batch_size, m)x(m, g, h) and the output will be 3D (batch_size, g, h)

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.MatrixMutiply,
                            bottom_names = ["slice1","slice2"],
                            top_names = ["MatrixMutiply1"])

MultiHeadAttention Layer

The MultiHeadAttention Layer is a binary operation that produces a matrix output from 3 matrix inputs by performing matrix mutiplication. The formulas is as follows: $$ \mathbf{O} = \text {softmax} (s \cdot (\mathbf{Q} \cdot \mathbf{K}) \odot \mathbf{M}) \cdot \mathbf{V} $$ Where $Q, K, V$ are 3D inputs and $O$ is 3D output. The $\odot$ represents element-wise dot while $\cdot$ represents matrix inner product. $\mathbf{M}$ is used to mask out padded input due to the inequality of sequence length. Please refer to Attention is all you need for more details. Parameter:

  • num_attention_heads: The number of attention heads. Default value is 1.

Input and Output Shapes:

  • input:
    • $Q$: (batch_size, seq_from, hidden_dim),
    • $K$: (batch_size, seq_to, hidden_dim),
    • $V$: (batch_size, seq_to, hidden_dim)
    • $M$ (optional): (batch_size, 1, seq_from, seq_to)
  • output:
    • $O$: (batch_size, seq_from, hidden_dim)

Example:

model.add(
    hugectr.DenseLayer(
        layer_type=hugectr.Layer_t.MultiHeadAttention,
        bottom_names=["query", "key", "value", "mask"],
        top_names=["attention_out"],
        num_attention_heads=4,
    )
)

SequenceMask Layer

The SequenceMask Layer can generate a binary padding mask which marks the zero padding values in the input by 0. The importance of having a padding mask is to make sure that these zero values are not processed along with the actual input values

Parameter:

  • max_sequence_len_from: The maximum length of query sequences. Default value is 1.
  • max_sequence_len_to: The maximum length of key sequences. Default value is 1.

Input and Output Shapes:

  • input: 2D: (batch_size, 1), (batch_size, 1)
  • output: 4D: (batch_size, 1, max_sequence_len_from, max_sequence_len_to)

Example:

model.add(hugectr.DenseLayer(layer_type=hugectr.Layer_t.SequenceMask,
                             bottom_names=["dense","dense"],
                             top_names=["sequence_mask"],
                             max_sequence_len_from=10,
                             max_sequence_len_to=10,))

Gather Layer

The Gather layer gather multiple output tensor slices from an input tensors on the last dimension.

Parameter:

  • indices: A list of indices in which each one represents an index in the input tensor to generate the corresponding output tensor. For example, [2, 8] indicates the second and eights tensor slice in the input tensor which are used to create an output tensor.

Input and Output Shapes:

  • input: (batch_size, num_elems)
  • output: (num_indices, num_elems)

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Gather,
                            bottom_names = ["reshape1"],
                            top_names = ["gather1"],
                            indices=[1,3,5]))

BinaryCrossEntropyLoss

BinaryCrossEntropyLoss calculates loss from labels and predictions where each label is binary. The final sigmoid function is fused with the loss function to better utilize memory bandwidth.

Parameter:

  • use_regularizer: Boolean, whether to use regulariers. THe default value is False.
  • regularizer_type: The regularizer type for the BinaryCrossEntropyLoss, CrossEntropyLoss or MultiCrossEntropyLoss layer. The supported types include hugectr.Regularizer_t.L1 and hugectr.Regularizer_t.L2. It will be ignored if use_regularizer is False. The default value is hugectr.Regularizer_t.L1.
  • lambda: Float, the lambda value of the regularization term. It will be ignored if use_regularier is False. The default value is 0.

Input and Output Shapes:

  • input: [(batch_size, 1), (batch_size, 1)] where the first tensor represents the predictions while the second tensor represents the labels
  • output: (batch_size, 1)

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.BinaryCrossEntropyLoss,
                            bottom_names = ["add", "label"],
                            top_names = ["loss"]))

CrossEntropyLoss

CrossEntropyLoss calculates loss from labels and predictions between the forward propagation phases and backward propagation phases. It assumes that each label is two-dimensional.

Parameter:

  • use_regularizer: Boolean, whether to use regulariers. THe default value is False.
  • regularizer_type: The regularizer type for the BinaryCrossEntropyLoss, CrossEntropyLoss or MultiCrossEntropyLoss layer. The supported types include hugectr.Regularizer_t.L1 and hugectr.Regularizer_t.L2. It will be ignored if use_regularizer is False. The default value is hugectr.Regularizer_t.L1.
  • lambda: Float, the lambda value of the regularization term. It will be ignored if use_regularier is False. The default value is 0.

Input and Output Shapes:

  • input: [(batch_size, 2), (batch_size, 2)] where the first tensor represents the predictions while the second tensor represents the labels
  • output: (batch_size, 2)

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.CrossEntropyLoss,
                            bottom_names = ["add", "label"],
                            top_names = ["loss"],
                            use_regularizer = True,
                            regularizer_type = hugectr.Regularizer_t.L2,
                            lambda = 0.1))

MultiCrossEntropyLoss

MultiCrossEntropyLoss calculates loss from labels and predictions between the forward propagation phases and backward propagation phases. It allows labels in an arbitrary dimension, but all the labels must be in the same shape.

Parameter:

  • use_regularizer: Boolean, whether to use regulariers. THe default value is False.
  • regularizer_type: The regularizer type for the BinaryCrossEntropyLoss, CrossEntropyLoss or MultiCrossEntropyLoss layer. The supported types include hugectr.Regularizer_t.L1 and hugectr.Regularizer_t.L2. It will be ignored if use_regularizer is False. The default value is hugectr.Regularizer_t.L1.
  • lambda: Float, the lambda value of the regularization term. It will be ignored if use_regularier is False. The default value is 0.

Input and Output Shapes:

  • input: [(batch_size, *), (batch_size, *)] where the first tensor represents the predictions while the second tensor represents the labels. * represents any even number of elements.
  • output: (batch_size, *)

Example:

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.MultiCrossEntropyLoss,
                            bottom_names = ["add", "label"],
                            top_names = ["loss"],
                            use_regularizer = True,
                            regularizer_type = hugectr.Regularizer_t.L1,
                            lambda = 0.1
                            ))

Embedding Collection

About the HugeCTR embedding collection

Embedding collection is introduced in the v3.7 release. The embedding collection enables you to use embeddings with different vector sizes, optimizers, and arbitrary table placement strategy. Compared with the hugectr.SparseEmbedding class, the embedding collection has three key advantages:

  1. The embedding collection can fuse embedding tables with different embedding vector sizes. The previous embedding can only fuse embedding tables with the same embedding vector size. The enhancement boosts both flexibility and performance.
  2. The embedding collection extends the functionality of embedding by supporting the concat combiner and supporting different lookups on the same embedding table.
  3. The embedding collection supports arbitrary embedding table placement, such as data parallel and model parallel.

Overview of using the HugeCTR embedding collection

To use an embedding collection, you need the following items:

  • A list of hugectr.EmbeddingTableConfig objects that represent the embedding tables, user needs to configure table name/max_vocabulary_size/ev_size/optimizer(optional).

  • A hugectr.EmbeddingCollectionConfig object that uses the embedding table config objects to organize the lookup operations between the input data and the embedding tables. It also provides method to configure the table placement strategy.

You can use the add() method from hugectr.Model to use the embedding collection for training and evaluation.

Known Limitations

  1. Only embedding_vec_size values of up to 256 are currently supported in the embedding collection.
  2. If you use a dynamic hash table (by setting max_vocabulary_size to -1 in hugectr.EmbeddingTableConfig), it is recommended that you set the NCCL_LAUNCH_MODE=GROUP environment variable to avoid potential hangs.
  3. Mixed-precision training is not supported when using a dynamic hash table.

EmbeddingTableConfig

The hugectr.EmbeddingTableConfig class enables you to specify the attributes of an embedding table.

Parameter:

  • name: String, a name which is used when dumping and loading embedding table.
  • max_vocabulary_size: Integer, specifies the vocabulary size of this table. If positive, then the value indicates the number of embedding vectors that this table contains. If you specify the value incorrectly and exceed the value during training or evaluation, you will cause an overflow and receive an error. If you do not know the exact size of the embedding table, you can specify -1 to use a dynamic hash embedding table with a size that can be extended dynamically during training or evaluation.
  • ev_size: Integer, specifies the embedding vector size that this embedding consists of.
  • opt_params: Optional, hugectr.Optimizer, the optimizer you want to use for this embedding table. If not specified, the embedding table uses the optimizer specified in hugectr.Model. Currently, if the user sets max_vocabulary_size to a value greater than 0, the supported optimizer types are SGD and AdaGrad. If the user sets max_vocabulary_size to -1, a dynamic hash embedding table is used, and the supported optimizer types are SGD, MomentumSGD, Nesterov, AdaGrad, RMSProp, Adam, and Ftrl.

Example:

# Create the embedding table.
slot_size_array = [203931, 18598, 14092, 7012, 18977, 4, 6385, 1245, 49,
                   186213, 71328, 67288, 11, 2168, 7338, 61, 4, 932, 15,
                   204515, 141526, 199433, 60919, 9137, 71, 34]
embedding_table_list = []
for i in range(len(slot_size_array))):
    embedding_table_list.append(
        hugectr.EmbeddingTableConfig(
            name="table_" + str(i),
            max_vocabulary_size=slot_size_array[i],
            ev_size=128,
        )
    )

EmbeddingCollectionConfig

Create a hugectr.EmbeddingCollectionConfig instance to construct the lookup operation and configure the table placement strategy.

Parameter:

  • use_exclusive_keys: bool, if true, any key is exclusively owned by only one table.
  • comm_strategy: hugectr.CommunicationStrategy, can be hugectr.CommunicationStrategy.Uniform or hugectr.CommunicationStrategy.Hierarchical.

embedding_lookup method

The embedding_lookup method enables you to specify the lookup operations between the input data and an embedding table.

Parameter:

  • table_config : hugectr.EmbeddingTableConfig, the embedding table for the lookup operation.
  • bottom_name: str, the bottom tensor name. Specify a tensor that is compatible with the data_reader_sparse_param_array parameter of hugectr.Input in hugectr.Model.
  • top_name: str, the output tensor name. The shape of output tensor is (<batch size>, 1, <embedding vector size>).
  • combiner: str, specifies the combiner operation. Specify mean, sum, or concat.

Embedding Collection supports configuring the batch-major output with list of args in embedding_lookup.

Parameter:

  • table_config : list of hugectr.EmbeddingTableConfig, the embedding table for the lookup operation.
  • bottom_name: list of str, the bottom tensor name. Specify a tensor that is compatible with the data_reader_sparse_param_array parameter of hugectr.Input in hugectr.Model.
  • top_name: str, the output tensor name. The shape of output tensor is (<batch size>, sum of all <embedding vector size>).
  • combiner: list of str, specifies the combiner operation. Specify mean, sum, or concat.

shard method

In the recommendation system, the embedding table is usually so large that a single GPU is not able to hold all embedding tables. One strategy for addressing the challenge is to use sharding to distribute the embedding tables across multiple GPUs. We call this sharding strategy the embedding table placement strategy (ETPS).

ETPS can significantly boost the performance of embedding because different sharding strategies influence the communication between GPUs. The optimal strategy is highly dependent on your dataset and your lookup operation.

EmbeddingCollectionConfig provides shard method for users to configure the ETPS so that users can adjust the ETPS according their own use case to achieve optimal performance.

Parameter:

  • shard_matrix: list of list of str, a matrix with num_gpus row and each row stores the name of embedding table that user want to place on row-th GPU.
  • shard_strategy: list of tuple(str, list of str), for each tuple(str, list of str), the first str means the table placement strategy, which can be "mp"(model parallel) or "dp"(data parallel), and the second list of str means table name which user want to apply the table placement strategy to. User can configure multiple table placement strategy. For example, [("mp", ["t0", "t1"]), ("dp", ["t2", "t3"])]. Note, the shard_strategy should be consistent with shard_matrix, which means for the table which is "dp" sharded should be placed on every GPU. And also one table can only be applied with one shard strategy.

Example:

# create embedding table configs
embedding_table_names = ["goods", "ads", "userID", "time"]
embedding_table_list = []
for name in embedding_table_names:
    embedding_table_list.append(
        hugectr.EmbeddingTableConfig(
            name=name,
            max_vocabulary_size=...,
            ev_size=...,
        )
    )

# create embedding collection config and configure lookup
ebc_config = hugectr.EmbeddingCollectionConfig()
ebc_config.embedding_lookup(
    table_config=[embedding_table_list[i] for i in range(NUM_TABLE)],
    bottom_name=["data{}".format(i) for i in range(NUM_TABLE)],
    top_name="sparse_embedding",
    combiner=["sum" for _ in range(NUM_TABLE)],
)

# configure the table placement strategy, suppose we have 4 GPUs
shard_matrix = [
    ["goods", "userID", "time"],
    ["ads", "time"],
    ["userID", "time"],
    ["goods", "time"]
]
shard_strategy = [
    ("mp", ["goods", "userID", "ads"]),
    ("dp", ["time"]),
]
ebc_config.shard(shard_matrix=shard_matrix, shard_strategy=shard_strategy)