Implementing Progressive GAN to generate mammogram images. Any deep learning model requires a signinficant amount of dataset. The publicly available dataset for mammogram images is not enough to train a deep learning model. This is a pytorch implementation of progressive GAN to generate mammogram images.
The dataset used is obtained from [here]
[step 1.] Prepare dataset
------------------------------------------
The training data folder should look like :
<train_data_root>
|--Your Folder
|--image 1
|--image 2
|--image 3 ...
------------------------------------------
[step 2.] Prepare environment using virtualenv
- you can easily set PyTorch (v0.3) and TensorFlow environment using virtualenv.
- CAUTION: if you have trouble installing PyTorch, install it mansually using pip. [PyTorch Install]
- For install please take your time and install all dependencies of PyTorch and also install tensorflow
$ virtualenv --python=python2.7 venv
$ . venv/bin/activate
$ pip install -r requirements.txt
$ conda install pytorch torchvision -c pytorch
[step 3.] Run training
- edit
config.py
to change parameters. (don't forget to change path to training images) - specify which gpu devices to be used, and change "n_gpu" option in
config.py
to support Multi-GPU training. - run it.
(example)
If using Single-GPU (device_id = 0):
$ vim config.py --> change "n_gpu=1"
$ CUDA_VISIBLE_DEVICES=0 python trainer.py
If using Multi-GPUs (device id = 1,3,7):
$ vim config.py --> change "n_gpu=3"
$ CUDA_VISIBLE_DEVICES=1,3,7 python trainer.py
[step 4.] Generate fake images using linear interpolation
CUDA_VISIBLE_DEVICES=0 python generate_interpolated.py