Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add unit tests for tensors #37

Merged
merged 1 commit into from
Dec 11, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions NetFabric.Numerics.sln
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,12 @@ Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "NetFabric.Numerics.Geodesy.
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "NetFabric.Numerics.Tensors", "src\NetFabric.Numerics.Tensors\NetFabric.Numerics.Tensors.csproj", "{8D2EE0A5-32A2-4019-AD55-7E9B70B76D67}"
EndProject
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "src", "src", "{EC0C1351-970E-48A9-BDA3-3E5E2B095402}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "NetFabric.Numerics.Tensors.UnitTests", "src\NetFabric.Numerics.Tensors.UnitTests\NetFabric.Numerics.Tensors.UnitTests.csproj", "{31E6CCB0-E04A-4947-BF74-E8E70D5594E5}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "NetFabric.Numerics.Tensors.Benchmarks", "src\NetFabric.Numerics.Tensors.Benchmarks\NetFabric.Numerics.Tensors.Benchmarks.csproj", "{A8467A84-F9DD-4B6C-91BB-CF39029331A4}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|Any CPU = Debug|Any CPU
Expand Down Expand Up @@ -96,6 +102,14 @@ Global
{8D2EE0A5-32A2-4019-AD55-7E9B70B76D67}.Debug|Any CPU.Build.0 = Debug|Any CPU
{8D2EE0A5-32A2-4019-AD55-7E9B70B76D67}.Release|Any CPU.ActiveCfg = Release|Any CPU
{8D2EE0A5-32A2-4019-AD55-7E9B70B76D67}.Release|Any CPU.Build.0 = Release|Any CPU
{31E6CCB0-E04A-4947-BF74-E8E70D5594E5}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{31E6CCB0-E04A-4947-BF74-E8E70D5594E5}.Debug|Any CPU.Build.0 = Debug|Any CPU
{31E6CCB0-E04A-4947-BF74-E8E70D5594E5}.Release|Any CPU.ActiveCfg = Release|Any CPU
{31E6CCB0-E04A-4947-BF74-E8E70D5594E5}.Release|Any CPU.Build.0 = Release|Any CPU
{A8467A84-F9DD-4B6C-91BB-CF39029331A4}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{A8467A84-F9DD-4B6C-91BB-CF39029331A4}.Debug|Any CPU.Build.0 = Debug|Any CPU
{A8467A84-F9DD-4B6C-91BB-CF39029331A4}.Release|Any CPU.ActiveCfg = Release|Any CPU
{A8467A84-F9DD-4B6C-91BB-CF39029331A4}.Release|Any CPU.Build.0 = Release|Any CPU
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
Expand All @@ -104,6 +118,8 @@ Global
{A04C4E36-5F33-43F8-A7EE-15D81C7F8A58} = {762517CA-3F22-4DC6-955C-4F4FC69EB670}
{BA0837F2-730C-4537-B08B-5FFD2D91AF30} = {762517CA-3F22-4DC6-955C-4F4FC69EB670}
{83BDB68A-4F4B-4D7D-A7C7-55CC9F03657B} = {762517CA-3F22-4DC6-955C-4F4FC69EB670}
{31E6CCB0-E04A-4947-BF74-E8E70D5594E5} = {EC0C1351-970E-48A9-BDA3-3E5E2B095402}
{A8467A84-F9DD-4B6C-91BB-CF39029331A4} = {EC0C1351-970E-48A9-BDA3-3E5E2B095402}
EndGlobalSection
GlobalSection(ExtensibilityGlobals) = postSolution
SolutionGuid = {AACC30AE-BE57-461F-817B-2AE0F001A33F}
Expand Down
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
using BenchmarkDotNet.Attributes;

namespace NetFabric.Numerics.Rectangular2D.Benchmarks;
namespace NetFabric.Numerics.Tensors.Benchmarks;

public class TensorAddBenchmarks
public class AddBenchmarks
{
short[]? arrayShort;
int[]? arrayInt;
Expand Down
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
using BenchmarkDotNet.Attributes;

namespace NetFabric.Numerics.Rectangular2D.Benchmarks;
namespace NetFabric.Numerics.Tensors.Benchmarks;

public class TensorAddValueBenchmarks
public class AddValueBenchmarks
{
short[]? arrayShort;
int[]? arrayInt;
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net8.0</TargetFramework>

<IsPackable>false</IsPackable>
<RootNamespace>NetFabric.Numerics.Tensors.Benchmarks</RootNamespace>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="BenchmarkDotNet" Version="0.13.11" />
</ItemGroup>

<ItemGroup>
<ProjectReference Include="..\NetFabric.Numerics.Tensors\NetFabric.Numerics.Tensors.csproj" />
</ItemGroup>

</Project>
36 changes: 36 additions & 0 deletions src/NetFabric.Numerics.Tensors.Benchmarks/Program.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
using BenchmarkDotNet.Columns;
using BenchmarkDotNet.Configs;
using BenchmarkDotNet.Jobs;
using BenchmarkDotNet.Reports;
using BenchmarkDotNet.Running;
using System.Runtime.Intrinsics;

var config = DefaultConfig.Instance
.WithSummaryStyle(SummaryStyle.Default.WithRatioStyle(RatioStyle.Trend))
.HideColumns(Column.EnvironmentVariables, Column.RatioSD, Column.Error)
// .AddDiagnoser(new DisassemblyDiagnoser(new DisassemblyDiagnoserConfig
// (exportGithubMarkdown: true, printInstructionAddresses: false)))
.AddJob(Job.Default.WithId("Scalar")
.WithEnvironmentVariable("DOTNET_EnableHWIntrinsic", "0")
.AsBaseline());

if (Vector128.IsHardwareAccelerated)
{
config = config
.AddJob(Job.Default.WithId("Vector128")
.WithEnvironmentVariable("DOTNET_EnableAVX2", "0")
.WithEnvironmentVariable("DOTNET_EnableAVX512F", "0"));
}
if (Vector256.IsHardwareAccelerated)
{
config = config
.AddJob(Job.Default.WithId("Vector256")
.WithEnvironmentVariable("DOTNET_EnableAVX512F", "0"));
}
if (Vector512.IsHardwareAccelerated)
{
config = config
.AddJob(Job.Default.WithId("Vector512"));
}

BenchmarkSwitcher.FromAssembly(typeof(Program).Assembly).Run(args, config);
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
using BenchmarkDotNet.Attributes;

namespace NetFabric.Numerics.Rectangular2D.Benchmarks;
namespace NetFabric.Numerics.Tensors.Benchmarks;

public class TensorSumBenchmarks
public class SumBenchmarks
{
short[]? arrayShort;
int[]? arrayInt;
Expand Down
100 changes: 100 additions & 0 deletions src/NetFabric.Numerics.Tensors.UnitTests/AddMultiplyTests.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
using System.Linq;

namespace NetFabric.Numerics.Tensors.UnitTests;

public class AddMultiplyTests
{
public static TheoryData<int> AddData
=> new() { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37 };

[Theory]
[MemberData(nameof(AddData))]
public void AddMultiply_Short_Should_Succeed(int count)
{
// arrange
var x = Enumerable.Range(0, count).Select(value => (short)value).ToArray();
var y = Enumerable.Range(0, count).Select(value => (short)(value + 1)).ToArray();
var z = Enumerable.Range(0, count).Select(value => (short)(value + 2)).ToArray();
var result = new short[count];
var expected = Enumerable.Range(0, count).Select(value => (short)((value + value + 1) * (value + 2))).ToArray();

// act
Tensor.AddMultiply<short>(x, y, z, result);

// assert
result.Should().Equal(expected);
}

[Theory]
[MemberData(nameof(AddData))]
public void AddMultiply_Int_Should_Succeed(int count)
{
// arrange
var x = Enumerable.Range(0, count).ToArray();
var y = Enumerable.Range(0, count).Select(value => value + 1).ToArray();
var z = Enumerable.Range(0, count).Select(value => value + 2).ToArray();
var result = new int[count];
var expected = Enumerable.Range(0, count).Select(value => (value + value + 1) * (value + 2)).ToArray();

// act
Tensor.AddMultiply<int>(x, y, z, result);

// assert
result.Should().Equal(expected);
}

[Theory]
[MemberData(nameof(AddData))]
public void AddMultiply_Long_Should_Succeed(int count)
{
// arrange
var x = Enumerable.Range(0, count).Select(value => (long)value).ToArray();
var y = Enumerable.Range(0, count).Select(value => (long)(value + 1)).ToArray();
var z = Enumerable.Range(0, count).Select(value => (long)(value + 2)).ToArray();
var result = new long[count];
var expected = Enumerable.Range(0, count).Select(value => (long)((value + value + 1) * (value + 2))).ToArray();

// act
Tensor.AddMultiply<long>(x, y, z, result);

// assert
result.Should().Equal(expected);
}

[Theory]
[MemberData(nameof(AddData))]
public void AddMultiply_Float_Should_Succeed(int count)
{
// arrange
var x = Enumerable.Range(0, count).Select(value => (float)value).ToArray();
var y = Enumerable.Range(0, count).Select(value => (float)(value + 1)).ToArray();
var z = Enumerable.Range(0, count).Select(value => (float)(value + 2)).ToArray();
var result = new float[count];
var expected = Enumerable.Range(0, count).Select(value => (float)((value + value + 1) * (value + 2))).ToArray();

// act
Tensor.AddMultiply<float>(x, y, z, result);

// assert
result.Should().Equal(expected);
}

[Theory]
[MemberData(nameof(AddData))]
public void AddMultiply_Double_Should_Succeed(int count)
{
// arrange
var x = Enumerable.Range(0, count).Select(value => (double)value).ToArray();
var y = Enumerable.Range(0, count).Select(value => (double)(value + 1)).ToArray();
var z = Enumerable.Range(0, count).Select(value => (double)(value + 2)).ToArray();
var result = new double[count];
var expected = Enumerable.Range(0, count).Select(value => (double)((value + value + 1) * (value + 2))).ToArray();

// act
Tensor.AddMultiply<double>(x, y, z, result);

// assert
result.Should().Equal(expected);
}

}
95 changes: 95 additions & 0 deletions src/NetFabric.Numerics.Tensors.UnitTests/AddTests.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
using System.Linq;

namespace NetFabric.Numerics.Tensors.UnitTests;

public class AddTests
{
public static TheoryData<int> AddData
=> new() { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37 };

[Theory]
[MemberData(nameof(AddData))]
public void Add_Short_Should_Succeed(int count)
{
// arrange
var x = Enumerable.Range(0, count).Select(value => (short)value).ToArray();
var y = Enumerable.Range(0, count).Select(value => (short)(value + 1)).ToArray();
var result = new short[count];
var expected = Enumerable.Range(0, count).Select(value => (short)(value + value + 1)).ToArray();

// act
Tensor.Add<short>(x, y, result);

// assert
result.Should().Equal(expected);
}

[Theory]
[MemberData(nameof(AddData))]
public void Add_Int_Should_Succeed(int count)
{
// arrange
var x = Enumerable.Range(0, count).ToArray();
var y = Enumerable.Range(0, count).Select(value => value + 1).ToArray();
var result = new int[count];
var expected = Enumerable.Range(0, count).Select(value => value + value + 1).ToArray();

// act
Tensor.Add<int>(x, y, result);

// assert
result.Should().Equal(expected);
}

[Theory]
[MemberData(nameof(AddData))]
public void Add_Long_Should_Succeed(int count)
{
// arrange
var x = Enumerable.Range(0, count).Select(value => (long)value).ToArray();
var y = Enumerable.Range(0, count).Select(value => (long)(value + 1)).ToArray();
var result = new long[count];
var expected = Enumerable.Range(0, count).Select(value => (long)(value + value + 1)).ToArray();

// act
Tensor.Add<long>(x, y, result);

// assert
result.Should().Equal(expected);
}

[Theory]
[MemberData(nameof(AddData))]
public void Add_Float_Should_Succeed(int count)
{
// arrange
var x = Enumerable.Range(0, count).Select(value => (float)value).ToArray();
var y = Enumerable.Range(0, count).Select(value => (float)(value + 1)).ToArray();
var result = new float[count];
var expected = Enumerable.Range(0, count).Select(value => (float)(value + value + 1)).ToArray();

// act
Tensor.Add<float>(x, y, result);

// assert
result.Should().Equal(expected);
}

[Theory]
[MemberData(nameof(AddData))]
public void Add_Double_Should_Succeed(int count)
{
// arrange
var x = Enumerable.Range(0, count).Select(value => (double)value).ToArray();
var y = Enumerable.Range(0, count).Select(value => (double)(value + 1)).ToArray();
var result = new double[count];
var expected = Enumerable.Range(0, count).Select(value => (double)(value + value + 1)).ToArray();

// act
Tensor.Add<double>(x, y, result);

// assert
result.Should().Equal(expected);
}

}
Loading