Skip to content

NiallMac/healpix_util

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

63 Commits
 
 
 
 
 
 

Repository files navigation

healpix

Some tools to work with healpix.

Note reader utilities use camelCase to avoid name collision with the healpy readers.

a few examples

import healpix_util as hu

# create a HealPix object.  This will carry around the nside, scheme, npix,
# etc.

hpix=hu.HealPix("ring", 4096)

print(hpix)
scheme:       1
scheme_name:  RING
nside:        4096
npix:         201326592
ncap:         33546240
area:         6.24178e-08 square degrees
area:         0.000224704 square arcmin
area:         0.808935 square arcsec

# has many attributes, e.g. .scheme, .nside, .npix, .area, etc.

# find pixel number for input ra,dec arrays
pixnums = hpix.eq2pix(ra, dec)
ra, dec = hpix.pix2eq(pixnums)

# or for theta,phi
pixnums = hpix.ang2pix(theta, phi)
theta, phi = hpix.pix2ang(pixnums)

# query disc 
pixnums = hpix.query_disc(ra, dec, radius_degrees)
pixnums = hpix.query_disc(ra, dec, radius_degrees, inclusive=True)
pixnums = hpix.query_disc(theta, phi, radius_radians, system='ang')


# load a healpix.Map object
m = hu.readMap(filename)
m = hu.readMap(filename, column='I')

# load multiple Maps into an ordered dict, keyed by column name
maps=hu.readMaps(filename)
maps=hu.readMaps(filename,columns=["I","Q"])

# convert between schemes
mnest = m.convert("nest")
mring = m.convert("ring")

# find the mapval for the input coordinates
mapvals = m.get_mapval(ra, dec)
mapvals = m.get_mapval(theta, phi, system='ang')

# load a healpix.DensityMap, a special map that represents
# a spatial density
dmap=hu.readDensityMap(filename)
dmaps=hu.readDensityMaps(filename)

# generate random points from the map
ra,dec = dmap.genrand(100000)

# limit the range to a region known to have non-zero density, or
# weight.  This will speed it up greatly
ra,dec = dmap.genrand(100000, ra_range=[60.,95.], dec_range=[-62.,-42.])

# generate randoms in theta,phi
theta,phi = dmap.genrand(100000, system='ang', theta_range=tr, phi_range=pr)

# healpy routines are pulled into the healpix_util namespace
npix=hu.nside2npix(nside)


# obscure features
# check quadrants around the input points
# make sure weighted position ellipticity in adjacent quadrants
# less than 0.05
ellip_max=0.05
for i in xrange(ra.size):
    maskflags[i] = dmap.check_quad(ra[i], dec[i], radius_degrees[i], ellip_max)

# see docs on quad_check
# checking maskflags > 1 indicates the cluster is "good", but note during
# a lensing measurement you should be careful to always use sources from
# the same pair of quadrants (unless all are good)

dependencies

  • numpy
  • healpy
  • fitsio # for file reading

About

Some python tools to work with healpix

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C 54.9%
  • Python 45.1%