forked from pageldev/libOpenDRIVE
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMath.hpp
158 lines (135 loc) · 5.38 KB
/
Math.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#pragma once
#include <algorithm>
#include <array>
#define _USE_MATH_DEFINES
#include <cmath>
#include <numeric>
#include <type_traits>
#include <vector>
namespace odr
{
template<typename T, size_t Dim, typename std::enable_if_t<std::is_arithmetic<T>::value>* = nullptr>
using Vec = std::array<T, Dim>;
using Vec1D = Vec<double, 1>;
using Vec2D = Vec<double, 2>;
using Vec3D = Vec<double, 3>;
using Line3D = std::vector<Vec3D>;
template<typename T, size_t Dim, typename std::enable_if_t<(Dim > 1)>* = nullptr, typename std::enable_if_t<std::is_arithmetic<T>::value>* = nullptr>
using Mat = std::array<std::array<T, Dim>, Dim>;
using Mat3D = Mat<double, 3>;
template<typename T>
int sign(T val)
{
return (T(0) < val) - (val < T(0));
}
template<typename T, size_t Dim, typename BinaryOperation, typename std::enable_if_t<std::is_arithmetic<T>::value>* = nullptr>
constexpr Vec<T, Dim> operation(const Vec<T, Dim>& a, const Vec<T, Dim>& b, BinaryOperation op)
{
Vec<T, Dim> res{};
for (size_t idx = 0; idx < Dim; idx++)
res[idx] = op(a[idx], b[idx]);
return res;
}
template<typename T, size_t Dim, typename std::enable_if_t<std::is_arithmetic<T>::value>* = nullptr>
constexpr Vec<T, Dim> add(const Vec<T, Dim>& a, const Vec<T, Dim>& b)
{
return operation<T, Dim, std::plus<T>>(a, b, std::plus<T>());
}
template<typename T, size_t Dim, typename std::enable_if_t<std::is_arithmetic<T>::value>* = nullptr>
constexpr Vec<T, Dim> sub(const Vec<T, Dim>& a, const Vec<T, Dim>& b)
{
return operation<T, Dim, std::minus<T>>(a, b, std::minus<T>());
}
template<typename T, size_t Dim, typename BinaryOperation, typename std::enable_if_t<std::is_arithmetic<T>::value>* = nullptr>
constexpr Vec<T, Dim> operation(const T& scalar, const Vec<T, Dim>& a, BinaryOperation op)
{
Vec<T, Dim> res{};
for (size_t idx = 0; idx < Dim; idx++)
res[idx] = op(scalar, a[idx]);
return res;
}
template<typename T, size_t Dim, typename std::enable_if_t<std::is_arithmetic<T>::value>* = nullptr>
constexpr Vec<T, Dim> add(const T& scalar, const Vec<T, Dim>& a)
{
return operation<T, Dim, std::plus<T>>(scalar, a, std::plus<T>());
}
template<typename T, size_t Dim, typename std::enable_if_t<std::is_arithmetic<T>::value>* = nullptr>
constexpr Vec<T, Dim> sub(const T& scalar, const Vec<T, Dim>& a)
{
return operation<T, Dim, std::minus<T>>(scalar, a, std::minus<T>());
}
template<typename T, size_t Dim, typename std::enable_if_t<std::is_arithmetic<T>::value>* = nullptr>
constexpr Vec<T, Dim> mut(const T& scalar, const Vec<T, Dim>& a)
{
return operation<T, Dim, std::multiplies<T>>(scalar, a, std::multiplies<T>());
}
template<typename T, size_t Dim, typename std::enable_if_t<std::is_arithmetic<T>::value>* = nullptr>
constexpr T euclDistance(const Vec<T, Dim> a, const Vec<T, Dim> b)
{
return std::sqrt(std::inner_product(a.begin(),
a.end(),
b.begin(),
T(0),
std::plus<T>(),
[](T a, T b)
{
T c = b - a;
return c * c;
}));
}
template<typename T, size_t Dim, typename std::enable_if_t<std::is_arithmetic<T>::value>* = nullptr>
constexpr T squaredNorm(const Vec<T, Dim> v)
{
return std::inner_product(v.begin(), v.end(), v.begin(), T(0));
}
template<typename T, size_t Dim, typename std::enable_if_t<std::is_arithmetic<T>::value>* = nullptr>
constexpr T norm(const Vec<T, Dim> v)
{
return std::sqrt(squaredNorm<T, Dim>(v));
}
template<typename T, size_t Dim, typename std::enable_if_t<std::is_arithmetic<T>::value>* = nullptr>
constexpr Vec<T, Dim> normalize(const Vec<T, Dim> v)
{
Vec<T, Dim> e_v{};
const T n = norm(v);
std::transform(v.begin(), v.end(), e_v.begin(), [&](const T& a) { return a / n; });
return e_v;
}
template<typename T, typename std::enable_if_t<std::is_arithmetic<T>::value>* = nullptr>
constexpr Vec<T, 3> crossProduct(const Vec<T, 3> a, const Vec<T, 3> b)
{
return {a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]};
}
template<typename T, size_t Dim, typename std::enable_if_t<std::is_arithmetic<T>::value>* = nullptr>
constexpr Vec<T, Dim> MatVecMultiplication(const Mat<T, Dim> m, const Vec<T, Dim> v)
{
Vec<T, Dim> res{};
res.fill(T{0});
for (size_t idx = 0; idx < Dim * Dim; idx++)
res[idx / Dim] += ((double*)m.data())[idx] * v[idx % Dim];
return res;
}
template<typename T, typename std::enable_if_t<std::is_arithmetic<T>::value>* = nullptr>
constexpr Mat<T, 3> EulerAnglesToMatrix(T r_x, T r_y, T r_z)
{
/* precompute sines and cosines of Euler angles */
const T su = std::sin(r_x);
const T cu = std::cos(r_x);
const T sv = std::sin(r_y);
const T cv = std::cos(r_y);
const T sw = std::sin(r_z);
const T cw = std::cos(r_z);
/* create and populate RotationMatrix */
Mat<T, 3> RotMat{};
RotMat[0][0] = cv * cw;
RotMat[0][1] = su * sv * cw - cu * sw;
RotMat[0][2] = su * sw + cu * sv * cw;
RotMat[1][0] = cv * sw;
RotMat[1][1] = cu * cw + su * sv * sw;
RotMat[1][2] = cu * sv * sw - su * cw;
RotMat[2][0] = -sv;
RotMat[2][1] = su * cv;
RotMat[2][2] = cu * cv;
return RotMat;
}
} // namespace odr