大家好, 欢迎大家来到我在慕课网上的实战课程《专为程序员设计的线性代数课》的官方代码仓。这个代码仓将不仅仅包含课程的所有源代码,还将发布课程的更新相关内容,勘误信息以及计划的更多可以丰富课程的内容,如更多分享,更多练习,等等等等。大家可以下载、运行、测试、修改。如果你发现了任何bug,或者对课程中的任何内容有意见或建议,欢迎和我联系:)
个人网站:liuyubobobo.com
微博: 刘宇波bobo http://weibo.com/liuyubobobo
知乎: 刘宇波 http://www.zhihu.com/people/liuyubobobo
知乎专栏:是不是很酷 https://zhuanlan.zhihu.com/liuyubobobo
个人公众号:是不是很酷:)
第一章 欢迎大家学习《专为程序员设计的线性代数课》 | 类别 | 章节文件夹 |
---|---|---|
1-1 欢迎大家学习《专为程序员设计的线性代数课》 | 原理 | - |
1-2 课程学习的更多补充说明 | 原理 | - |
1-3 线性代数与机器学习 | 原理 | - |
1-4 课程使用环境的搭建 | 实现 | Python |
第二章 一切从向量开始 | - | 章节文件夹 |
2-1 什么是向量 | 原理 | - |
2-2 向量的更多术语和表示法 | 原理 | - |
2-3 实现属于我们自己的向量 | 实现 | Python |
2-4 向量的两个基本运算 | 原理 | - |
2-5 实现向量的基本运算 | 实现 | Python |
2-6 向量基本运算的性质与数学大厦的建立 | 原理 | - |
2-7 零向量 | 原理 | - |
2-8 实现零向量 | 实现 | Python |
2-9 小结:一切从向量出发 | 原理 | - |
第三章 向量的高级话题与应用 | - | 章节文件夹 |
3-1 规范化和单位向量 | 原理 | - |
3-2 实现向量的规范化 | 实现 | Python |
3-3 向量的点乘与几何意义 | 原理 | - |
3-4 向量点乘的直观理解和实现 | 原理 | - |
3-5 实现向量的点乘操作 | 实现 | Python |
3-6 向量点乘的应用 | 原理 | - |
3-7 Numpy中向量的基本使用 | 实现 | Python |
补充内容1:向量点乘表示相似程度的应用举例 | [整理中] | [敬请期待] |
第四章 矩阵不只是m*n个数字 | - | 章节文件夹 |
4-1 什么是矩阵 | 原理 | - |
4-2 实现属于我们自己的矩阵类 | 实现 | Python |
4-3 矩阵的基本运算和基本性质 | 原理 | - |
4-4 实现矩阵的基本运算 | 实现 | Python |
4-5 看待矩阵的另一个视角:系统 | 原理 | - |
4-6 矩阵和向量的乘法 | 原理 | - |
4-7 矩阵和矩阵的乘法 | 原理 | - |
4-8 实现矩阵的乘法 | 实现 | Python |
4-9 矩阵乘法的性质和矩阵的幂 | 原理 | - |
4-10 矩阵的转置 | 原理 | - |
4-11 实现矩阵的转置和Numpy中的矩阵 | 实现 | Python |
第五章 矩阵的应用和关于矩阵的更多高级话题 | - | 章节文件夹 |
5-1 更多变换矩阵 | 原理 | - |
5-2 矩阵旋转变换与矩阵在图形学中的应用 | 原理 | - |
5-3 实现矩阵变换在图形学中的应用 | 实现 | Python |
5-4 从缩放变换到单位矩阵 | 原理 | - |
5-5 矩阵的逆 | 原理 | - |
5-6 实现单位矩阵和numpy中矩阵的逆 | 实现 | Python |
5-7 矩阵的逆的性质 | 原理 | - |
5-8 看待矩阵的关键视角:用矩阵表示空间 | 原理 | Python |
5-9 总结:看待矩阵的四个重要视角 | 原理 | - |
补充内容1:矩阵幂的应用 | [整理中] | [敬请期待] |
补充内容2:矩阵幂的实现 | [整理中] | [敬请期待] |
第六章 线性系统 | - | 章节文件夹 |
6-1 线性系统与消元法 | 原理 | - |
6-2 高斯消元法 | 原理 | - |
6-3 高斯-约旦消元法 | 原理 | - |
6-4 实现高斯-约旦消元法 | 实现 | Python |
6-5 行最简形式和线性方程组解的结构 | 原理 | - |
6-6 直观理解线性方程组解的结构 | 原理 | - |
6-7 更一般化的高斯-约旦消元法 | 原理 | - |
6-8 实现更一般化的高斯-约旦消元法 | 实现 | Python |
6-9 齐次线性方程组 | 原理 | - |
第七章 初等矩阵和可逆性 | - | 章节文件夹 |
7-1 线性系统与矩阵的逆 | 原理 | - |
7-2 实现矩阵的逆的求解 | 实现 | Python |
7-3 初等矩阵 | 原理 | - |
7-4 从初等矩阵到矩阵的可逆性 | 原理 | - |
7-5 为什么矩阵可逆这么重要 | 原理 | - |
7-6 矩阵的LU分解 | 原理 | - |
7-7 实现矩阵的LU分解 | 实现 | Python |
7-8 非方阵的LU分解,矩阵的LDU分解和PLU分解 | 原理 | - |
7-9 矩阵的PLUP'分解和再看矩阵的乘法 | 原理 | - |
补充内容1: Scipy中矩阵的LU分解(PLU分解) | [整理中] | [敬请期待] |
第八章 线性相关,线性无关和生成空间 | - | [更新中,敬请期待] |
8-1 线性组合 | 原理 | - |
8-2 线性相关和线性无关 | 原理 | - |
8-3 线性相关的重要性质 | 原理 | - |
8-4 形象理解线性相关和空间的基 | 原理 | - |
8-5 空间的基的重要性质 | 原理 | - |
第九章 正交性 | - | [更新中,敬请期待] |
第十章 再看线性变换 | - | [更新中,敬请期待] |
第十一章 行列式 | - | [更新中,敬请期待] |
第十二章 特征值与特征向量 | - | [更新中,敬请期待] |
第十三章 矩阵对角化与SVD | - | [更新中,敬请期待] |
第十四章 更广阔的线性代数世界,大家加油! | - | [更新中,敬请期待] |
课程正在更新中,敬请期待:)
这个课程上线一波三折,最重要的是课程临上线,慕课网给出的定价和我预想的不一样。我一直希望线数作为基础课程,能将价格控制在300以内,但是慕课网最终还是定在了348。多次尝试沟通无果以后,我只能重新调整课程大纲,增加更多的内容,让这个课程对得起这个价格。这使得这个课程上线的时候内容相对较少。实在是抱歉大家。我也很过意不去,希望大家能谅解。
课程整体更新进度是:初期一周两章。后期尽量保证一周两章,但是根据经验,课程到后期通常会慢一些,有可能是两周三章甚至一周一章。
为了弥补大家对这个课程早早的给予以支持,我会在课程更新期间,每周在课程群里发一个小红包。钱不会很多,大家图一个乐呵,活跃一下群里的气氛,几周下来积攒起来,大家也权当是买这个课有一个小优惠。但请土豪们一定原谅我无法挥金如土。
最后,课程有任何意见和建议,请一定告诉我。课程刚上线,就有同学在评论区提出将实现和原理的章节完全分开。我已经悉听遵命,又对课程进行了调整。我一定尽力让大家有所收获!
谢谢大家!大家加油!
课程讲义的PDF版本不在github上提供,大家可以在慕课网上 "下载 -> 查看讲师源码" 中各个章节文件夹下找到。