Skip to content

Commit

Permalink
community[minor]: Add Apache Doris as vector store (langchain-ai#17527)
Browse files Browse the repository at this point in the history
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
  • Loading branch information
liugddx and baskaryan authored Feb 18, 2024
1 parent a058c88 commit 73edf17
Show file tree
Hide file tree
Showing 5 changed files with 833 additions and 0 deletions.
21 changes: 21 additions & 0 deletions docs/docs/integrations/providers/apache_doris.mdx
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
# Apache Doris

>[Apache Doris](https://doris.apache.org/) is a modern data warehouse for real-time analytics.
It delivers lightning-fast analytics on real-time data at scale.

>Usually `Apache Doris` is categorized into OLAP, and it has showed excellent performance in [ClickBench — a Benchmark For Analytical DBMS](https://benchmark.clickhouse.com/). Since it has a super-fast vectorized execution engine, it could also be used as a fast vectordb.
## Installation and Setup


```bash
pip install pymysql
```

## Vector Store

See a [usage example](/docs/integrations/vectorstores/apache_doris).

```python
from langchain_community.vectorstores import ApacheDoris
```
322 changes: 322 additions & 0 deletions docs/docs/integrations/vectorstores/apache_doris.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,322 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "84180ad0-66cd-43e5-b0b8-2067a29e16ba",
"metadata": {
"collapsed": false
},
"source": [
"# Apache Doris\n",
"\n",
">[Apache Doris](https://doris.apache.org/) is a modern data warehouse for real-time analytics.\n",
"It delivers lightning-fast analytics on real-time data at scale.\n",
"\n",
">Usually `Apache Doris` is categorized into OLAP, and it has showed excellent performance in [ClickBench — a Benchmark For Analytical DBMS](https://benchmark.clickhouse.com/). Since it has a super-fast vectorized execution engine, it could also be used as a fast vectordb.\n",
"\n",
"Here we'll show how to use the Apache Doris Vector Store."
]
},
{
"cell_type": "markdown",
"id": "1685854f",
"metadata": {},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "311d44bb-4aca-4f3b-8f97-5e1f29238e40",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet pymysql"
]
},
{
"cell_type": "markdown",
"id": "2c891bba",
"metadata": {},
"source": [
"Set `update_vectordb = False` at the beginning. If there is no docs updated, then we don't need to rebuild the embeddings of docs"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f4e6ca20-79dd-482a-8f68-af9d7dd59c7c",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"!pip install sqlalchemy\n",
"!pip install langchain"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "96f7c7a2-4811-4fdf-87f5-c60772f51fe1",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-14T12:54:01.392500Z",
"start_time": "2024-02-14T12:53:58.866615Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain.text_splitter import TokenTextSplitter\n",
"from langchain_community.document_loaders import (\n",
" DirectoryLoader,\n",
" UnstructuredMarkdownLoader,\n",
")\n",
"from langchain_community.vectorstores.apache_doris import (\n",
" ApacheDoris,\n",
" ApacheDorisSettings,\n",
")\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
"\n",
"update_vectordb = False"
]
},
{
"cell_type": "markdown",
"id": "ee821c00",
"metadata": {},
"source": [
"## Load docs and split them into tokens"
]
},
{
"cell_type": "markdown",
"id": "34ba0cfd",
"metadata": {},
"source": [
"Load all markdown files under the `docs` directory\n",
"\n",
"for Apache Doris documents, you can clone repo from https://github.com/apache/doris, and there is `docs` directory in it."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "799edf20-bcf4-4a65-bff7-b907f6bdba20",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-14T12:55:24.128917Z",
"start_time": "2024-02-14T12:55:19.463831Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"loader = DirectoryLoader(\n",
" \"./docs\", glob=\"**/*.md\", loader_cls=UnstructuredMarkdownLoader\n",
")\n",
"documents = loader.load()"
]
},
{
"cell_type": "markdown",
"id": "b415fe2a",
"metadata": {},
"source": [
"Split docs into tokens, and set `update_vectordb = True` because there are new docs/tokens."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "0dc5ba83-62ef-4f61-a443-e872f251e7da",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# load text splitter and split docs into snippets of text\n",
"text_splitter = TokenTextSplitter(chunk_size=400, chunk_overlap=50)\n",
"split_docs = text_splitter.split_documents(documents)\n",
"\n",
"# tell vectordb to update text embeddings\n",
"update_vectordb = True"
]
},
{
"cell_type": "markdown",
"id": "46966e25-9449-4a36-87d1-c0b25dce2994",
"metadata": {
"collapsed": false
},
"source": [
"split_docs[-20]"
]
},
{
"cell_type": "markdown",
"id": "99422e95-b407-43eb-aa68-9a62363fc82f",
"metadata": {
"collapsed": false
},
"source": [
"print(\"# docs = %d, # splits = %d\" % (len(documents), len(split_docs)))"
]
},
{
"cell_type": "markdown",
"id": "e780d77f-3f96-4690-a10f-f87566f7ccc6",
"metadata": {
"collapsed": false
},
"source": [
"## Create vectordb instance"
]
},
{
"cell_type": "markdown",
"id": "15702d9c",
"metadata": {},
"source": [
"### Use Apache Doris as vectordb"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "ced7dbe1",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-14T12:55:39.508287Z",
"start_time": "2024-02-14T12:55:39.500370Z"
}
},
"outputs": [],
"source": [
"def gen_apache_doris(update_vectordb, embeddings, settings):\n",
" if update_vectordb:\n",
" docsearch = ApacheDoris.from_documents(split_docs, embeddings, config=settings)\n",
" else:\n",
" docsearch = ApacheDoris(embeddings, settings)\n",
" return docsearch"
]
},
{
"cell_type": "markdown",
"id": "15d86fda",
"metadata": {},
"source": [
"## Convert tokens into embeddings and put them into vectordb"
]
},
{
"cell_type": "markdown",
"id": "ff1322ea",
"metadata": {},
"source": [
"Here we use Apache Doris as vectordb, you can configure Apache Doris instance via `ApacheDorisSettings`.\n",
"\n",
"Configuring Apache Doris instance is pretty much like configuring mysql instance. You need to specify:\n",
"1. host/port\n",
"2. username(default: 'root')\n",
"3. password(default: '')\n",
"4. database(default: 'default')\n",
"5. table(default: 'langchain')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "b34f8c31-c173-4902-8168-2e838ddfb9e9",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-14T12:56:02.671291Z",
"start_time": "2024-02-14T12:55:48.350294Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c53ab3f2-9e34-4424-8b07-6292bde67e14",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"update_vectordb = True\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"\n",
"# configure Apache Doris settings(host/port/user/pw/db)\n",
"settings = ApacheDorisSettings()\n",
"settings.port = 9030\n",
"settings.host = \"172.30.34.130\"\n",
"settings.username = \"root\"\n",
"settings.password = \"\"\n",
"settings.database = \"langchain\"\n",
"docsearch = gen_apache_doris(update_vectordb, embeddings, settings)\n",
"\n",
"print(docsearch)\n",
"\n",
"update_vectordb = False"
]
},
{
"cell_type": "markdown",
"id": "bde66626",
"metadata": {},
"source": [
"## Build QA and ask question to it"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "84921814",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI()\n",
"qa = RetrievalQA.from_chain_type(\n",
" llm=llm, chain_type=\"stuff\", retriever=docsearch.as_retriever()\n",
")\n",
"query = \"what is apache doris\"\n",
"resp = qa.run(query)\n",
"print(resp)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
9 changes: 9 additions & 0 deletions libs/community/langchain_community/vectorstores/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,6 +74,12 @@ def _import_annoy() -> Any:
return Annoy


def _import_apache_doris() -> Any:
from langchain_community.vectorstores.apache_doris import ApacheDoris

return ApacheDoris


def _import_atlas() -> Any:
from langchain_community.vectorstores.atlas import AtlasDB

Expand Down Expand Up @@ -497,6 +503,8 @@ def __getattr__(name: str) -> Any:
return _import_elastic_vector_search()
elif name == "Annoy":
return _import_annoy()
elif name == "ApacheDoris":
return _import_apache_doris()
elif name == "AtlasDB":
return _import_atlas()
elif name == "AwaDB":
Expand Down Expand Up @@ -640,6 +648,7 @@ def __getattr__(name: str) -> Any:
"AlibabaCloudOpenSearchSettings",
"AnalyticDB",
"Annoy",
"ApacheDoris",
"AtlasDB",
"AwaDB",
"AzureSearch",
Expand Down
Loading

0 comments on commit 73edf17

Please sign in to comment.