Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

init v0.2.0 #283

Merged
merged 2 commits into from
Dec 20, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@
[![Embark](https://img.shields.io/badge/discord-OpenRL-%237289da.svg?logo=discord)](https://discord.gg/qMbVT2qBhr)
[![slack badge](https://img.shields.io/badge/Slack-join-blueviolet?logo=slack&amp)](https://join.slack.com/t/openrlhq/shared_invite/zt-1tqwpvthd-Eeh0IxQ~DIaGqYXoW2IUQg)

OpenRL-v0.1.10 is updated on Oct 27, 2023
OpenRL-v0.2.0 is updated on Dec 20, 2023

The main branch is the latest version of OpenRL, which is under active development. If you just want to have a try with
OpenRL, you can switch to the stable branch.
Expand Down
9 changes: 4 additions & 5 deletions examples/envpool/envpool_wrappers.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,7 @@
from packaging import version
from stable_baselines3.common.vec_env import VecEnvWrapper as BaseWrapper
from stable_baselines3.common.vec_env import VecMonitor
from stable_baselines3.common.vec_env.base_vec_env import (VecEnvObs,
VecEnvStepReturn)
from stable_baselines3.common.vec_env.base_vec_env import VecEnvObs, VecEnvStepReturn

is_legacy_gym = version.parse(gym.__version__) < version.parse("0.26.0")

Expand Down Expand Up @@ -114,9 +113,9 @@ def __init__(

if is_wrapped_with_monitor:
warnings.warn(
"The environment is already wrapped with a `Monitor` wrapper"
"but you are wrapping it with a `VecMonitor` wrapper, the `Monitor` statistics will be"
"overwritten by the `VecMonitor` ones.",
"The environment is already wrapped with a `Monitor` wrapperbut you are"
" wrapping it with a `VecMonitor` wrapper, the `Monitor` statistics"
" will beoverwritten by the `VecMonitor` ones.",
UserWarning,
)

Expand Down
11 changes: 7 additions & 4 deletions examples/envpool/make_env.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,12 @@
import envpool
from gymnasium import Env


from openrl.envs.vec_env import (AsyncVectorEnv, RewardWrapper,
SyncVectorEnv, VecMonitorWrapper)
from openrl.envs.vec_env import (
AsyncVectorEnv,
RewardWrapper,
SyncVectorEnv,
VecMonitorWrapper,
)
from openrl.envs.vec_env.vec_info import VecInfoFactory
from openrl.envs.wrappers.base_wrapper import BaseWrapper
from openrl.rewards import RewardFactory
Expand Down Expand Up @@ -76,7 +79,7 @@ def make_envpool_envs(
assert kwargs.get("env_type") in ["gym", "dm", "gymnasium"]
kwargs["envpool"] = True

if 'env_wrappers' in kwargs:
if "env_wrappers" in kwargs:
env_wrappers = kwargs.pop("env_wrappers")
else:
env_wrappers = []
Expand Down
4 changes: 2 additions & 2 deletions examples/envpool/train_ppo.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,10 +16,10 @@

""""""
import numpy as np

from openrl.configs.config import create_config_parser
from make_env import make

from examples.envpool.envpool_wrappers import VecAdapter, VecMonitor
from openrl.configs.config import create_config_parser
from openrl.modules.common import PPONet as Net
from openrl.modules.common.ppo_net import PPONet as Net
from openrl.runners.common import PPOAgent as Agent
Expand Down
2 changes: 1 addition & 1 deletion openrl/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
__TITLE__ = "openrl"
__VERSION__ = "v0.1.10"
__VERSION__ = "v0.2.0"
__DESCRIPTION__ = "Distributed Deep RL Framework"
__AUTHOR__ = "OpenRL Contributors"
__EMAIL__ = "huangshiyu@4paradigm.com"
Expand Down
2 changes: 1 addition & 1 deletion openrl/envs/common/build_envs.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,4 +69,4 @@ def _make_env() -> Env:
return _make_env

env_fns = [create_env(env_id, env_num, need_env_id) for env_id in range(env_num)]
return env_fns
return env_fns
2 changes: 1 addition & 1 deletion openrl/envs/common/registration.py
Original file line number Diff line number Diff line change
Expand Up @@ -173,4 +173,4 @@ def make(
vec_info_class = VecInfoFactory.get_vec_info_class(vec_info_class, env)
env = VecMonitorWrapper(vec_info_class, env)

return env
return env
23 changes: 12 additions & 11 deletions openrl/envs/nlp/daily_dialog_env.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,16 +72,18 @@ def __init__(
# set the observation and action space here
self._vocab_size = self.tokenizer.vocab_size

self.observation_space = DictSpace({
"input_encoded_pt": spaces.Box(
low=0,
high=self._vocab_size,
shape=(self._max_text_length + self.max_steps,),
),
"input_attention_mask_pt": spaces.Box(
low=0, high=1, shape=(self._max_text_length + self.max_steps,)
),
})
self.observation_space = DictSpace(
{
"input_encoded_pt": spaces.Box(
low=0,
high=self._vocab_size,
shape=(self._max_text_length + self.max_steps,),
),
"input_attention_mask_pt": spaces.Box(
low=0, high=1, shape=(self._max_text_length + self.max_steps,)
),
}
)
self.action_space = Discrete(n=self._vocab_size)
# see https://github.com/huggingface/transformers/issues/4875 : rounding up to nearest power of 2 for better GPU efficiency

Expand Down Expand Up @@ -112,7 +114,6 @@ def __init__(
self.reward_function = None

def set_reward(self, reward_fn=None):

self.reward_function = reward_fn

def step_word(self, word: str) -> Tuple[Dict[str, torch.tensor], int, bool, dict]:
Expand Down
22 changes: 12 additions & 10 deletions openrl/envs/nlp/fake_dialog_env.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,16 +30,18 @@ def __init__(
# set the observation and action space here
self._vocab_size = 2

self.observation_space = DictSpace({
"input_encoded_pt": spaces.Box(
low=0,
high=self._vocab_size,
shape=(self._max_text_length + self.max_steps,),
),
"input_attention_mask_pt": spaces.Box(
low=0, high=1, shape=(self._max_text_length + self.max_steps,)
),
})
self.observation_space = DictSpace(
{
"input_encoded_pt": spaces.Box(
low=0,
high=self._vocab_size,
shape=(self._max_text_length + self.max_steps,),
),
"input_attention_mask_pt": spaces.Box(
low=0, high=1, shape=(self._max_text_length + self.max_steps,)
),
}
)
self.action_space = Discrete(n=self._vocab_size)

n = 2
Expand Down
5 changes: 2 additions & 3 deletions openrl/envs/nlp/rewards/intent.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,10 +41,9 @@ def __init__(
self.use_model_parallel = False

if intent_model == "builtin_intent":

self._device = "cpu"
self.use_data_parallel = False
self.use_data_parallel = False

from transformers import GPT2Config, GPT2LMHeadModel

class TestTokenizer:
Expand Down
15 changes: 8 additions & 7 deletions openrl/envs/nlp/rewards/kl_penalty.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,10 +47,9 @@ def __init__(

# reference model
if ref_model == "builtin_ref":

self.device = "cpu"
self.use_data_parallel = False
self.use_data_parallel = False

from transformers import GPT2Config, GPT2LMHeadModel

config = GPT2Config()
Expand Down Expand Up @@ -146,10 +145,12 @@ def __call__(
rew = -self._alpha * kl_div
infos = []
for kl in kl_div:
infos.append({
"alpha": self._alpha,
"kl_div": kl.mean(),
})
infos.append(
{
"alpha": self._alpha,
"kl_div": kl.mean(),
}
)
return rew, infos

def _prepare_inputs_for_model(
Expand Down
24 changes: 14 additions & 10 deletions openrl/envs/nlp/utils/metrics/meteor.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,16 +88,20 @@ def _info(self):
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=[
datasets.Features({
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Sequence(
datasets.Value("string", id="sequence"), id="references"
),
}),
datasets.Features({
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}),
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Sequence(
datasets.Value("string", id="sequence"), id="references"
),
}
),
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}
),
],
codebase_urls=[
"https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"
Expand Down
1 change: 0 additions & 1 deletion openrl/modules/networks/policy_network_gpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,6 @@ def __init__(
disable_drop_out: bool = True,
extra_args=None,
) -> None:

self.device = device
self.use_fp16 = cfg.use_fp16
self.use_deepspeed = cfg.use_deepspeed
Expand Down
1 change: 0 additions & 1 deletion openrl/modules/networks/value_network_gpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,6 @@ def __init__(
device=torch.device("cpu"),
extra_args=None,
):

self.device = device

self.use_fp16 = cfg.use_fp16
Expand Down
12 changes: 9 additions & 3 deletions openrl/modules/utils/valuenorm.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,9 +24,15 @@ def __init__(
self.per_element_update = per_element_update
self.tpdv = dict(dtype=torch.float32, device=device)

self.running_mean = nn.Parameter(torch.zeros(input_shape), requires_grad=False).to(**self.tpdv)
self.running_mean_sq = nn.Parameter(torch.zeros(input_shape), requires_grad=False).to(**self.tpdv)
self.debiasing_term = nn.Parameter(torch.tensor(0.0), requires_grad=False).to(**self.tpdv)
self.running_mean = nn.Parameter(
torch.zeros(input_shape), requires_grad=False
).to(**self.tpdv)
self.running_mean_sq = nn.Parameter(
torch.zeros(input_shape), requires_grad=False
).to(**self.tpdv)
self.debiasing_term = nn.Parameter(torch.tensor(0.0), requires_grad=False).to(
**self.tpdv
)

# self.running_mean = nn.Parameter(torch.zeros(input_shape), requires_grad=False)
# self.running_mean_sq = nn.Parameter(
Expand Down