-
Notifications
You must be signed in to change notification settings - Fork 74
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Conv1D_Transpose, Conv2D_Transpose, Conv3D_Transpose
- Loading branch information
Showing
4 changed files
with
290 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,3 @@ | ||
from onnx2tf.onnx2tf import convert, main | ||
|
||
__version__ = '0.0.18' | ||
__version__ = '0.0.19' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,288 @@ | ||
import random | ||
random.seed(0) | ||
import numpy as np | ||
np.random.seed(0) | ||
import tensorflow as tf | ||
import onnx_graphsurgeon as gs | ||
from onnx2tf.utils.common_functions import ( | ||
get_constant_or_variable, | ||
get_weights_constant_or_variable, | ||
print_node_info, | ||
inverted_operation_enable_disable, | ||
convert_reverse_axis, | ||
tf_shape, | ||
) | ||
from onnx2tf.utils.colors import Color | ||
|
||
|
||
@print_node_info | ||
@inverted_operation_enable_disable | ||
def make_node( | ||
*, | ||
graph_node: gs.Node, | ||
tf_layers_dict: dict, | ||
**kwargs: dict, | ||
): | ||
"""ConvTranspose | ||
Parameters | ||
---------- | ||
graph_node: gs.Node | ||
graph_surgeon Node | ||
tf_layers_dict: dict | ||
optype, shape, dtype, tensorflow graph | ||
""" | ||
before_op_output_shape_trans_1 = \ | ||
tf_layers_dict.get(graph_node.inputs[0].name, {}).get('before_op_output_shape_trans', True) | ||
before_op_output_shape_trans = \ | ||
before_op_output_shape_trans_1 | ||
|
||
input_tensor = get_constant_or_variable( | ||
graph_node.inputs[0], | ||
before_op_output_shape_trans, | ||
) | ||
kernel_shape = graph_node.attrs.get('kernel_shape', []) | ||
kernel_size = len(kernel_shape) | ||
input_weights = get_weights_constant_or_variable( | ||
const_or_var=graph_node.inputs[1], | ||
kernel_size=kernel_size, | ||
) | ||
input_bias = None | ||
if len(graph_node.inputs) >= 3: | ||
input_bias = get_constant_or_variable( | ||
graph_node.inputs[2], | ||
before_op_output_shape_trans, | ||
) | ||
graph_node_output: gs.Variable = graph_node.outputs[0] | ||
shape = graph_node_output.shape | ||
dtype = graph_node_output.dtype | ||
|
||
input_tensor = tf_layers_dict[input_tensor.name]['tf_node'] \ | ||
if isinstance(input_tensor, gs.Variable) else input_tensor | ||
input_tensor_shape = input_tensor.shape | ||
input_weights = tf_layers_dict[input_weights.name]['tf_node'] \ | ||
if isinstance(input_weights, gs.Variable) else input_weights | ||
input_bias = tf_layers_dict[input_weights.name]['tf_node'] \ | ||
if isinstance(input_bias, gs.Variable) else input_bias | ||
|
||
input_tensor_shape = input_tensor.shape | ||
input_tensor_rank = len(input_tensor_shape) | ||
spatial_size = input_tensor_rank - 2 | ||
input_weights_shape = input_weights.shape | ||
auto_pad = graph_node.attrs.get('auto_pad', 'NOTSET') | ||
dilations = graph_node.attrs.get('dilations', [1] * spatial_size) | ||
group = graph_node.attrs.get('group', 1) | ||
output_padding = graph_node.attrs.get('output_padding', None) | ||
output_shape = graph_node.attrs.get('output_shape', None) | ||
pads = graph_node.attrs.get('pads', [0, 0] * spatial_size) | ||
strides = graph_node.attrs.get('strides', [1] * spatial_size) | ||
|
||
# Preserving Graph Structure (Dict) | ||
tf_layers_dict[graph_node_output.name] = { | ||
'optype': graph_node.op, | ||
'shape': shape, | ||
'dtype': dtype, | ||
} | ||
|
||
# Generation of TF OP | ||
# Check auto_pad nonexistent or NOTSET first | ||
pad_mode = 'VALID' | ||
if auto_pad == 'NOTSET': | ||
pad_mode = 'NOTSET' | ||
# Then we use auto_pad to setup pad_mode | ||
elif auto_pad == "SAME_UPPER": | ||
pad_mode = "SAME" | ||
elif auto_pad == "VALID": | ||
pad_mode = "VALID" | ||
elif auto_pad == "SAME_LOWER": | ||
error_msg = f'' +\ | ||
f'{Color.RED}ERROR:{Color.RESET} ' +\ | ||
f'Invalid auto_pad attribute: {auto_pad}' | ||
print(error_msg) | ||
assert False, error_msg | ||
else: | ||
error_msg = f'' +\ | ||
f'{Color.RED}ERROR:{Color.RESET} ' +\ | ||
f'Invalid auto_pad attribute: {auto_pad}' | ||
print(error_msg) | ||
assert False, error_msg | ||
|
||
|
||
# ConvTranspose | ||
# if dilations != [1] * spatial_size: | ||
# error_msg = f'' +\ | ||
# f'{Color.RED}ERROR:{Color.RESET} ' +\ | ||
# f'Cannot set non-1 dilation for ConvTranspose.' | ||
# print(error_msg) | ||
# assert False, error_msg | ||
|
||
if group == 1: | ||
input_tensor_splits = [input_tensor] | ||
weight_splits = [input_weights] | ||
else: | ||
input_tensor_splits = tf.split(input_tensor, num_or_size_splits=group, axis=-1) | ||
weight_splits = tf.split(input_weights, num_or_size_splits=group, axis=-1) | ||
convolved = [] | ||
|
||
# get corresponding function in tf | ||
conv_func = None | ||
if spatial_size == 1: | ||
conv_func = tf.nn.conv1d_transpose | ||
strides = strides[0] | ||
elif spatial_size == 2: | ||
conv_func = tf.nn.conv2d_transpose | ||
elif spatial_size == 3: | ||
conv_func = tf.nn.conv3d_transpose | ||
else: | ||
error_msg = f'' +\ | ||
f'{Color.RED}ERROR:{Color.RESET} ' +\ | ||
f'Transposed convolution for {spatial_size}d is not implemented in Tensorflow.' | ||
print(error_msg) | ||
assert False, error_msg | ||
|
||
for (input_tensor_split, weight_split) in zip(input_tensor_splits, weight_splits): | ||
input_tensor_split_shape = input_tensor_split.shape | ||
input_tensor_split_spatial_shape = input_tensor_split_shape[1:-1] | ||
conv_output_shape = None | ||
|
||
if pad_mode == "NOTSET": | ||
if graph_node_output.shape is not None: | ||
converted_axis = [] | ||
for idx in range(len(graph_node_output.shape)): | ||
converted_axis.append( | ||
convert_reverse_axis( | ||
axis=idx, | ||
tensor_rank=input_tensor_rank, | ||
before_op_output_shape_trans=True, | ||
) | ||
) | ||
conv_output_shape = [0] * input_tensor_rank | ||
for idx in range(len(graph_node_output.shape)): | ||
conv_output_shape[idx] = graph_node_output.shape[converted_axis[idx]] | ||
elif output_shape is None: | ||
conv_output_shape = \ | ||
input_tensor_split_shape[0] + \ | ||
[ | ||
strides[i] * input_tensor_split_spatial_shape[i] - strides[i] + (kernel_shape[i] - 1) * dilations[i] + 1 \ | ||
for i in list(range(spatial_size)) | ||
] + \ | ||
input_tensor_split_shape[-1] | ||
elif output_shape is not None: | ||
conv_output_shape = [ | ||
s + pads[i] + pads[spatial_size + i] \ | ||
if s is not None else None \ | ||
for i, s in enumerate(output_shape) | ||
] | ||
|
||
# use raw input x to do transposed conv | ||
conv_rs = conv_func( | ||
input=input_tensor_split, | ||
filters=weight_split, | ||
output_shape=conv_output_shape, | ||
strides=strides, | ||
padding="VALID", | ||
) | ||
|
||
# pad output first by output_padding attr | ||
if output_padding is not None and output_shape is None: | ||
output_padding = \ | ||
[ | ||
[0, 0] | ||
] + \ | ||
[ | ||
[0, p] for p in output_padding | ||
] + \ | ||
[ | ||
[0, 0] | ||
] | ||
conv_rs = tf.pad(conv_rs, output_padding) | ||
|
||
# remove pads set in pads attr | ||
conv_rs_shape = tf_shape( | ||
input_tensor=conv_rs, | ||
dtype=tf.int32, | ||
) | ||
conv_rs_shape_list = [ | ||
conv_rs_shape[i] for i in range(conv_rs.shape.rank) | ||
] | ||
begin = [0] + pads[:spatial_size] + [0] | ||
size = \ | ||
[-1] + \ | ||
[ | ||
s - pads[idx] - pads[idx + spatial_size] for idx, s in enumerate(conv_rs_shape_list[1:-1]) | ||
] + \ | ||
[-1] | ||
conv_rs = tf.slice(conv_rs, begin=begin, size=size) | ||
convolved.append(conv_rs) | ||
|
||
else: | ||
if graph_node_output.shape is not None: | ||
converted_axis = [] | ||
for idx in range(len(graph_node_output.shape)): | ||
converted_axis.append( | ||
convert_reverse_axis( | ||
axis=idx, | ||
tensor_rank=input_tensor_rank, | ||
before_op_output_shape_trans=True, | ||
) | ||
) | ||
conv_output_shape = [0] * input_tensor_rank | ||
for idx in range(len(graph_node_output.shape)): | ||
conv_output_shape[idx] = graph_node_output.shape[converted_axis[idx]] | ||
elif pad_mode == "VALID": | ||
conv_output_shape = \ | ||
input_tensor_split_shape[0] + \ | ||
[ | ||
strides[i] * (input_tensor_split_spatial_shape[i] - 1) + input_weights_shape[i] \ | ||
for i in list(range(spatial_size)) | ||
] + \ | ||
input_tensor_split_shape[-1] | ||
else: | ||
conv_output_shape = \ | ||
input_tensor_split_shape[0] + \ | ||
[ | ||
strides[i] * input_tensor_split_spatial_shape[i] \ | ||
for i in list(range(spatial_size)) | ||
] + \ | ||
input_tensor_split_shape[-1] | ||
|
||
# use raw input x to do transposed conv | ||
conv_rs = conv_func( | ||
input=input_tensor_split, | ||
filters=weight_split, | ||
output_shape=conv_output_shape, | ||
strides=strides, | ||
padding=pad_mode, | ||
) | ||
convolved.append(conv_rs) | ||
|
||
if input_bias is not None: | ||
if len(convolved) == 1: | ||
# Conv1D_Transpose, Conv2D_Transpose, Conv3D_Transpose - Bias Add | ||
tf_layers_dict[graph_node_output.name]['tf_node'] = \ | ||
tf.add( | ||
convolved[0], | ||
input_bias, | ||
) | ||
else: | ||
# Conv1D_Transpose, Conv2D_Transpose, Conv3D_Transpose - Bias Add | ||
tf_layers_dict[graph_node_output.name]['tf_node'] = \ | ||
tf.add( | ||
tf.concat( | ||
values=convolved, | ||
axis=-1 | ||
), | ||
input_bias, | ||
) | ||
else: | ||
if len(convolved) == 1: | ||
# Conv1D_Transpose, Conv2D_Transpose, Conv3D_Transpose - No Bias | ||
tf_layers_dict[graph_node_output.name]['tf_node'] = convolved[0] | ||
else: | ||
# Conv1D_Transpose, Conv2D_Transpose, Conv3D_Transpose - No Bias | ||
tf_layers_dict[graph_node_output.name]['tf_node'] = \ | ||
tf.concat( | ||
values=convolved, | ||
axis=-1 | ||
) |