- python 3.8
- torch 1.12.1+cu113
- torch_geometric 2.1.0
- torch_sparse 0.6.15
- torch_scatter 2.0.9
- numpy 1.21.5
For experiments in Motivation section and on four medium-scale datasets, please download datasets DBLP.zip
, ACM.zip
, IMDB.zip
, Freebase.zip
from the source of HGB benchmark, and extract content from these compresesed files under the folder './data/'
.
For experiments on the large dataset AMiner, The dataset will be downloaded automatically. If the download fails, you can view the source code of torch_geometric.datasets
and update the url.
For medium-scale datasets:
python train_hgb.py --dataset ACM --method FreeHGC --reduction-rate 0.1 --pr 0.95 --gpu 0 --num-hops 3 --num-hidden 128 --lr 0.001 --dropout 0.5 --ff-layer-2 2 --ACM-keep-F
For large-scale dataset:
python train_ogbn_pr.py --dataset aminer --method FreeHGC --reduction-rate 0.05 --num-hops 2