Skip to content

Commit

Permalink
plt update net instance, test=model
Browse files Browse the repository at this point in the history
  • Loading branch information
Zeref996 committed Sep 4, 2024
1 parent b154952 commit 25aaae1
Show file tree
Hide file tree
Showing 74 changed files with 120 additions and 115 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -47,12 +47,12 @@ def forward(
var_9 = var_5.matmul(var_8)
var_10 = var_9.__mul__(0.125)
var_11 = paddle.nn.functional.activation.softmax(var_10, axis=-1)
var_12 = paddle.nn.functional.common.dropout(var_11, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_12 = paddle.nn.functional.common.dropout(var_11, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
var_13 = var_12.matmul(var_7)
var_14 = var_13.transpose((0, 2, 1, 3,))
var_15 = var_14.reshape((-1, 198, 192,))
var_16 = paddle.nn.functional.common.linear(x=var_15, weight=self.parameter_2, bias=self.parameter_4, name=None)
var_17 = paddle.nn.functional.common.dropout(var_16, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_17 = paddle.nn.functional.common.dropout(var_16, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
return var_17


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -47,12 +47,12 @@ def forward(
var_9 = var_5.matmul(var_8)
var_10 = var_9.__mul__(0.125)
var_11 = paddle.nn.functional.activation.softmax(var_10, axis=-1)
var_12 = paddle.nn.functional.common.dropout(var_11, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_12 = paddle.nn.functional.common.dropout(var_11, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
var_13 = var_12.matmul(var_7)
var_14 = var_13.transpose((0, 2, 1, 3,))
var_15 = var_14.reshape((-1, 198, 192,))
var_16 = paddle.nn.functional.common.linear(x=var_15, weight=self.parameter_1, bias=self.parameter_2, name=None)
var_17 = paddle.nn.functional.common.dropout(var_16, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_17 = paddle.nn.functional.common.dropout(var_16, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
return var_17


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -47,12 +47,12 @@ def forward(
var_9 = var_5.matmul(var_8)
var_10 = var_9.__mul__(0.125)
var_11 = paddle.nn.functional.activation.softmax(var_10, axis=-1)
var_12 = paddle.nn.functional.common.dropout(var_11, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_12 = paddle.nn.functional.common.dropout(var_11, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
var_13 = var_12.matmul(var_7)
var_14 = var_13.transpose((0, 2, 1, 3,))
var_15 = var_14.reshape((-1, 197, 192,))
var_16 = paddle.nn.functional.common.linear(x=var_15, weight=self.parameter_3, bias=self.parameter_5, name=None)
var_17 = paddle.nn.functional.common.dropout(var_16, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_17 = paddle.nn.functional.common.dropout(var_16, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
return var_17


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -47,12 +47,12 @@ def forward(
var_9 = var_5.matmul(var_8)
var_10 = var_9.__mul__(0.125)
var_11 = paddle.nn.functional.activation.softmax(var_10, axis=-1)
var_12 = paddle.nn.functional.common.dropout(var_11, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_12 = paddle.nn.functional.common.dropout(var_11, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
var_13 = var_12.matmul(var_7)
var_14 = var_13.transpose((0, 2, 1, 3,))
var_15 = var_14.reshape((-1, 197, 192,))
var_16 = paddle.nn.functional.common.linear(x=var_15, weight=self.parameter_0, bias=self.parameter_5, name=None)
var_17 = paddle.nn.functional.common.dropout(var_16, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_17 = paddle.nn.functional.common.dropout(var_16, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
return var_17


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ def forward(
):
paddle.seed(33)
var_1 = paddle.nn.functional.pooling.adaptive_avg_pool2d(var_0, output_size=1, data_format='NCHW', name=None)
var_2 = paddle.nn.functional.common.dropout(var_1, p=0.2, axis=None, training=True, mode='upscale_in_train', name=None)
var_2 = paddle.nn.functional.common.dropout(var_1, p=0.2, axis=None, training=self.training, mode='upscale_in_train', name=None)
var_3 = paddle.tensor.manipulation.squeeze(var_2, axis=[2, 3])
var_4 = paddle.nn.functional.common.linear(x=var_3, weight=self.parameter_1, bias=self.parameter_0, name=None)
return var_4
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ def forward(
):
paddle.seed(33)
var_1 = paddle.nn.functional.pooling.adaptive_avg_pool2d(var_0, output_size=1, data_format='NCHW', name=None)
var_2 = paddle.nn.functional.common.dropout(var_1, p=0.2, axis=None, training=True, mode='upscale_in_train', name=None)
var_2 = paddle.nn.functional.common.dropout(var_1, p=0.2, axis=None, training=self.training, mode='upscale_in_train', name=None)
var_3 = paddle.tensor.manipulation.squeeze(var_2, axis=[2, 3])
var_4 = paddle.nn.functional.common.linear(x=var_3, weight=self.parameter_1, bias=self.parameter_0, name=None)
return var_4
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ def forward(
paddle.seed(33)
var_1 = paddle.nn.functional.pooling.adaptive_avg_pool2d(var_0, output_size=1, data_format='NCHW', name=None)
var_2 = paddle.tensor.manipulation.squeeze(var_1, axis=[2, 3])
var_3 = paddle.nn.functional.common.dropout(var_2, p=0.2, axis=None, training=True, mode='downscale_in_infer', name=None)
var_3 = paddle.nn.functional.common.dropout(var_2, p=0.2, axis=None, training=self.training, mode='downscale_in_infer', name=None)
var_4 = paddle.nn.functional.common.linear(x=var_3, weight=self.parameter_0, bias=self.parameter_1, name=None)
return var_4

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ def forward(
paddle.seed(33)
var_1 = paddle.nn.functional.pooling.adaptive_avg_pool2d(var_0, output_size=1, data_format='NCHW', name=None)
var_2 = paddle.tensor.manipulation.squeeze(var_1, axis=[2, 3])
var_3 = paddle.nn.functional.common.dropout(var_2, p=0.2, axis=None, training=True, mode='downscale_in_infer', name=None)
var_3 = paddle.nn.functional.common.dropout(var_2, p=0.2, axis=None, training=self.training, mode='downscale_in_infer', name=None)
var_4 = paddle.nn.functional.common.linear(x=var_3, weight=self.parameter_1, bias=self.parameter_0, name=None)
return var_4

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ def forward(
paddle.seed(33)
var_1 = paddle.nn.functional.pooling.adaptive_avg_pool2d(var_0, output_size=1, data_format='NCHW', name=None)
var_2 = var_1.reshape([43, 320])
var_3 = paddle.nn.functional.common.dropout(var_2, p=0.1, axis=None, training=True, mode='upscale_in_train', name=None)
var_3 = paddle.nn.functional.common.dropout(var_2, p=0.1, axis=None, training=self.training, mode='upscale_in_train', name=None)
var_4 = paddle.nn.functional.common.linear(x=var_3, weight=self.parameter_0, bias=self.parameter_1, name=None)
return var_4

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ def forward(
paddle.seed(33)
var_1 = paddle.nn.functional.pooling.adaptive_avg_pool2d(var_0, output_size=1, data_format='NCHW', name=None)
var_2 = var_1.reshape([11, 320])
var_3 = paddle.nn.functional.common.dropout(var_2, p=0.1, axis=None, training=True, mode='upscale_in_train', name=None)
var_3 = paddle.nn.functional.common.dropout(var_2, p=0.1, axis=None, training=self.training, mode='upscale_in_train', name=None)
var_4 = paddle.nn.functional.common.linear(x=var_3, weight=self.parameter_0, bias=self.parameter_1, name=None)
return var_4

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ def forward(
paddle.seed(33)
var_1 = paddle.nn.functional.pooling.avg_pool2d(var_0, kernel_size=[7, 7])
var_2 = var_1.flatten(1)
var_3 = paddle.nn.functional.common.dropout(var_2, p=0.05, training=True)
var_3 = paddle.nn.functional.common.dropout(var_2, p=0.05, training=self.training)
var_4 = paddle.nn.functional.common.linear(x=var_3, weight=self.parameter_0, bias=self.parameter_1, name=None)
return var_4

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ def forward(
paddle.seed(33)
var_1 = paddle.nn.functional.pooling.avg_pool2d(var_0, kernel_size=[7, 7])
var_2 = var_1.flatten(1)
var_3 = paddle.nn.functional.common.dropout(var_2, p=0.05, training=True)
var_3 = paddle.nn.functional.common.dropout(var_2, p=0.05, training=self.training)
var_4 = paddle.nn.functional.common.linear(x=var_3, weight=self.parameter_1, bias=self.parameter_0, name=None)
return var_4

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ def forward(
var_0, # (shape: [22, 3840, 1, 1], dtype: paddle.float32, stop_gradient: False)
):
paddle.seed(33)
var_1 = paddle.nn.functional.common.dropout(var_0, p=0.2, axis=None, training=True, mode='upscale_in_train', name=None)
var_1 = paddle.nn.functional.common.dropout(var_0, p=0.2, axis=None, training=self.training, mode='upscale_in_train', name=None)
var_2 = paddle.nn.functional.conv._conv_nd(var_1, self.parameter_1, bias=self.parameter_0, stride=[1, 1], padding=[0, 0], padding_algorithm='EXPLICIT', dilation=[1, 1], groups=1, data_format='NCHW', channel_dim=1, op_type='conv2d', use_cudnn=True)
var_3 = var_2.squeeze(axis=-1)
var_4 = var_3.squeeze(axis=-1)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ def forward(
var_0, # (shape: [10, 3840, 1, 1], dtype: paddle.float32, stop_gradient: False)
):
paddle.seed(33)
var_1 = paddle.nn.functional.common.dropout(var_0, p=0.2, axis=None, training=True, mode='upscale_in_train', name=None)
var_1 = paddle.nn.functional.common.dropout(var_0, p=0.2, axis=None, training=self.training, mode='upscale_in_train', name=None)
var_2 = paddle.nn.functional.conv._conv_nd(var_1, self.parameter_0, bias=self.parameter_1, stride=[1, 1], padding=[0, 0], padding_algorithm='EXPLICIT', dilation=[1, 1], groups=1, data_format='NCHW', channel_dim=1, op_type='conv2d', use_cudnn=True)
var_3 = var_2.squeeze(axis=-1)
var_4 = var_3.squeeze(axis=-1)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -281,7 +281,7 @@ def forward(
var_59 = paddle.nn.functional.conv._conv_nd(var_56, self.parameter_35, bias=self.parameter_48, stride=[1, 1], padding=[1, 1], padding_algorithm='EXPLICIT', dilation=[1, 1], groups=1, data_format='NCHW', channel_dim=1, op_type='conv2d', use_cudnn=True)
var_60 = paddle.nn.functional.activation.relu(var_59)
var_61 = paddle.tensor.manipulation.concat([var_58, var_60], axis=1)
var_62 = paddle.nn.functional.common.dropout(var_61, p=0.5, axis=None, training=True, mode='downscale_in_infer', name=None)
var_62 = paddle.nn.functional.common.dropout(var_61, p=0.5, axis=None, training=self.training, mode='downscale_in_infer', name=None)
var_63 = paddle.nn.functional.conv._conv_nd(var_62, self.parameter_44, bias=self.parameter_1, stride=[1, 1], padding=[0, 0], padding_algorithm='EXPLICIT', dilation=[1, 1], groups=1, data_format='NCHW', channel_dim=1, op_type='conv2d', use_cudnn=True)
var_64 = paddle.nn.functional.activation.relu(var_63)
var_65 = paddle.nn.functional.pooling.adaptive_avg_pool2d(var_64, output_size=1, data_format='NCHW', name=None)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -281,7 +281,7 @@ def forward(
var_59 = paddle.nn.functional.conv._conv_nd(var_56, self.parameter_39, bias=self.parameter_1, stride=[1, 1], padding=[1, 1], padding_algorithm='EXPLICIT', dilation=[1, 1], groups=1, data_format='NCHW', channel_dim=1, op_type='conv2d', use_cudnn=True)
var_60 = paddle.nn.functional.activation.relu(var_59)
var_61 = paddle.tensor.manipulation.concat([var_58, var_60], axis=1)
var_62 = paddle.nn.functional.common.dropout(var_61, p=0.5, axis=None, training=True, mode='downscale_in_infer', name=None)
var_62 = paddle.nn.functional.common.dropout(var_61, p=0.5, axis=None, training=self.training, mode='downscale_in_infer', name=None)
var_63 = paddle.nn.functional.conv._conv_nd(var_62, self.parameter_15, bias=self.parameter_17, stride=[1, 1], padding=[0, 0], padding_algorithm='EXPLICIT', dilation=[1, 1], groups=1, data_format='NCHW', channel_dim=1, op_type='conv2d', use_cudnn=True)
var_64 = paddle.nn.functional.activation.relu(var_63)
var_65 = paddle.nn.functional.pooling.adaptive_avg_pool2d(var_64, output_size=1, data_format='NCHW', name=None)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def forward(
var_2 = var_1.flatten(2)
var_3 = var_2.transpose([0, 2, 1])
var_4 = paddle.nn.functional.norm.layer_norm(var_3, normalized_shape=[384], weight=self.parameter_2, bias=self.parameter_1, epsilon=1e-05)
var_5 = paddle.nn.functional.common.dropout(var_4, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_5 = paddle.nn.functional.common.dropout(var_4, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
return var_5


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def forward(
var_2 = var_1.flatten(2)
var_3 = var_2.transpose([0, 2, 1])
var_4 = paddle.nn.functional.norm.layer_norm(var_3, normalized_shape=[768], weight=self.parameter_0, bias=self.parameter_3, epsilon=1e-05)
var_5 = paddle.nn.functional.common.dropout(var_4, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_5 = paddle.nn.functional.common.dropout(var_4, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
return var_5


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def forward(
var_2 = var_1.flatten(2)
var_3 = var_2.transpose([0, 2, 1])
var_4 = paddle.nn.functional.norm.layer_norm(var_3, normalized_shape=[192], weight=self.parameter_3, bias=self.parameter_2, epsilon=1e-05)
var_5 = paddle.nn.functional.common.dropout(var_4, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_5 = paddle.nn.functional.common.dropout(var_4, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
return var_5


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def forward(
var_2 = var_1.flatten(2)
var_3 = var_2.transpose([0, 2, 1])
var_4 = paddle.nn.functional.norm.layer_norm(var_3, normalized_shape=[96], weight=self.parameter_1, bias=self.parameter_0, epsilon=1e-05)
var_5 = paddle.nn.functional.common.dropout(var_4, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_5 = paddle.nn.functional.common.dropout(var_4, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
return var_5


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def forward(
var_2 = var_1.flatten(2)
var_3 = var_2.transpose([0, 2, 1])
var_4 = paddle.nn.functional.norm.layer_norm(var_3, normalized_shape=[384], weight=self.parameter_0, bias=self.parameter_2, epsilon=1e-05)
var_5 = paddle.nn.functional.common.dropout(var_4, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_5 = paddle.nn.functional.common.dropout(var_4, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
return var_5


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def forward(
var_2 = var_1.flatten(2)
var_3 = var_2.transpose([0, 2, 1])
var_4 = paddle.nn.functional.norm.layer_norm(var_3, normalized_shape=[768], weight=self.parameter_3, bias=self.parameter_2, epsilon=1e-05)
var_5 = paddle.nn.functional.common.dropout(var_4, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_5 = paddle.nn.functional.common.dropout(var_4, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
return var_5


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def forward(
var_2 = var_1.flatten(2)
var_3 = var_2.transpose([0, 2, 1])
var_4 = paddle.nn.functional.norm.layer_norm(var_3, normalized_shape=[96], weight=self.parameter_2, bias=self.parameter_0, epsilon=1e-05)
var_5 = paddle.nn.functional.common.dropout(var_4, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_5 = paddle.nn.functional.common.dropout(var_4, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
return var_5


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def forward(
var_2 = var_1.flatten(2)
var_3 = var_2.transpose([0, 2, 1])
var_4 = paddle.nn.functional.norm.layer_norm(var_3, normalized_shape=[192], weight=self.parameter_1, bias=self.parameter_0, epsilon=1e-05)
var_5 = paddle.nn.functional.common.dropout(var_4, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_5 = paddle.nn.functional.common.dropout(var_4, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
return var_5


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ def forward(
var_0, # (shape: [22, 2048, 10, 10], dtype: paddle.float32, stop_gradient: False)
):
paddle.seed(33)
var_1 = paddle.nn.functional.common.dropout(var_0, p=0.5, axis=None, training=True, mode='downscale_in_infer', name=None)
var_1 = paddle.nn.functional.common.dropout(var_0, p=0.5, axis=None, training=self.training, mode='downscale_in_infer', name=None)
var_2 = paddle.nn.functional.pooling.adaptive_avg_pool2d(var_1, output_size=1, data_format='NCHW', name=None)
var_3 = paddle.tensor.manipulation.squeeze(var_2, axis=[2, 3])
var_4 = paddle.nn.functional.common.linear(x=var_3, weight=self.parameter_1, bias=self.parameter_0, name=None)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ def forward(
var_0, # (shape: [10, 2048, 10, 10], dtype: paddle.float32, stop_gradient: False)
):
paddle.seed(33)
var_1 = paddle.nn.functional.common.dropout(var_0, p=0.5, axis=None, training=True, mode='downscale_in_infer', name=None)
var_1 = paddle.nn.functional.common.dropout(var_0, p=0.5, axis=None, training=self.training, mode='downscale_in_infer', name=None)
var_2 = paddle.nn.functional.pooling.adaptive_avg_pool2d(var_1, output_size=1, data_format='NCHW', name=None)
var_3 = paddle.tensor.manipulation.squeeze(var_2, axis=[2, 3])
var_4 = paddle.nn.functional.common.linear(x=var_3, weight=self.parameter_1, bias=self.parameter_0, name=None)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ def forward(
var_6 = var_5.reshape([-1, 96, 200, 304])
var_7 = var_6.flatten(2)
var_8 = var_7.transpose([0, 2, 1])
var_9 = paddle.nn.functional.common.dropout(var_8, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_9 = paddle.nn.functional.common.dropout(var_8, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
return var_9


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ def forward(
var_6 = var_5.reshape([-1, 96, 136, 160])
var_7 = var_6.flatten(2)
var_8 = var_7.transpose([0, 2, 1])
var_9 = paddle.nn.functional.common.dropout(var_8, p=0.0, axis=None, training=True, mode='upscale_in_train', name=None)
var_9 = paddle.nn.functional.common.dropout(var_8, p=0.0, axis=None, training=self.training, mode='upscale_in_train', name=None)
return var_9


Expand Down
Loading

0 comments on commit 25aaae1

Please sign in to comment.