Skip to content

Commit

Permalink
Qutrit channel amplitude damping (#5503)
Browse files Browse the repository at this point in the history
**Context:**
`default.qutrit.mixed` device has been added, but only one channel has
been added,
[qml.QutritDepolarizingChannel](#5502),
this adds the second channel to the device so the device can simulate
the qutrit equivalent of amplitude damping noise.

**Description of the Change:**
Adds new channel module to `qml.ops.qutrit` package. Adding the second
qutrit channel `QutritAmplitudeDamping`.

**Benefits:**
Allows for `defualt.qutrit.mixed` to simulate amplitude damping noise.
Making `default.qutrit.mixed`, much more useful.

**Possible Drawbacks:**
N/A

**Related GitHub Issues:**
N/A

---------

Co-authored-by: Gabriel Bottrill <bottrill@student.ubc.ca>
Co-authored-by: Olivia Di Matteo <2068515+glassnotes@users.noreply.github.com>
Co-authored-by: Thomas R. Bromley <49409390+trbromley@users.noreply.github.com>
Co-authored-by: Mudit Pandey <mudit.pandey@xanadu.ai>
  • Loading branch information
5 people authored May 23, 2024
1 parent b05565e commit fdca352
Show file tree
Hide file tree
Showing 5 changed files with 202 additions and 15 deletions.
1 change: 1 addition & 0 deletions doc/introduction/operations.rst
Original file line number Diff line number Diff line change
Expand Up @@ -507,6 +507,7 @@ Qutrit noisy channels
:nosignatures:

~pennylane.QutritDepolarizingChannel
~pennylane.QutritAmplitudeDamping

:html:`</div>`

Expand Down
3 changes: 3 additions & 0 deletions doc/releases/changelog-dev.md
Original file line number Diff line number Diff line change
Expand Up @@ -122,6 +122,9 @@
returning a list of `QuantumTape`s and a post-processing function instead of simply the transformed circuit.
[(#5693)](https://github.com/PennyLaneAI/pennylane/pull/5693)

* `qml.QutritAmplitudeDamping` channel has been added, allowing for noise processes modelled by amplitude damping to be simulated on the `default.qutrit.mixed` device.
[(#5503)](https://github.com/PennyLaneAI/pennylane/pull/5503)

<h3>Deprecations 👋</h3>

* The `simplify` argument in `qml.Hamiltonian` and `qml.ops.LinearCombination` is deprecated.
Expand Down
3 changes: 2 additions & 1 deletion pennylane/ops/qutrit/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@
from .observables import *
from .parametric_ops import *
from .state_preparation import *
from .channel import QutritDepolarizingChannel
from .channel import *

# TODO: Change `qml.Identity` for qutrit support or add `qml.TIdentity` for qutrits
__ops__ = {
Expand All @@ -50,6 +50,7 @@
}
__channels__ = {
"QutritDepolarizingChannel",
"QutritAmplitudeDamping",
}

__all__ = list(__ops__ | __obs__ | __channels__)
91 changes: 91 additions & 0 deletions pennylane/ops/qutrit/channel.py
Original file line number Diff line number Diff line change
Expand Up @@ -222,3 +222,94 @@ def compute_kraus_matrices(p): # pylint:disable=arguments-differ
)

return [identity] + Ks


class QutritAmplitudeDamping(Channel):
r"""
Single-qutrit amplitude damping error channel.
Interaction with the environment can lead to changes in the state populations of a qutrit.
This can be modelled by the qutrit amplitude damping channel with the following Kraus matrices:
.. math::
K_0 = \begin{bmatrix}
1 & 0 & 0\\
0 & \sqrt{1-\gamma_1} & 0 \\
0 & 0 & \sqrt{1-\gamma_2}
\end{bmatrix}, \quad
K_1 = \begin{bmatrix}
0 & \sqrt{\gamma_1} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \quad
K_2 = \begin{bmatrix}
0 & 0 & \sqrt{\gamma_2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
where :math:`\gamma_1 \in [0, 1]` and :math:`\gamma_2 \in [0, 1]` are the amplitude damping
probabilities for subspaces (0,1) and (0,2) respectively.
.. note::
The Kraus operators :math:`\{K_0, K_1, K_2\}` are adapted from [`1 <https://doi.org/10.48550/arXiv.1905.10481>`_] (Eq. 8).
**Details:**
* Number of wires: 1
* Number of parameters: 2
Args:
gamma_1 (float): :math:`|1 \rangle \rightarrow |0 \rangle` amplitude damping probability.
gamma_2 (float): :math:`|2 \rangle \rightarrow |0 \rangle` amplitude damping probability.
wires (Sequence[int] or int): the wire the channel acts on
id (str or None): String representing the operation (optional)
"""

num_params = 2
num_wires = 1
grad_method = "F"

def __init__(self, gamma_1, gamma_2, wires, id=None):
# Verify gamma_1 and gamma_2
for gamma in (gamma_1, gamma_2):
if not (math.is_abstract(gamma_1) or math.is_abstract(gamma_2)):
if not 0.0 <= gamma <= 1.0:
raise ValueError("Each probability must be in the interval [0,1]")
super().__init__(gamma_1, gamma_2, wires=wires, id=id)

@staticmethod
def compute_kraus_matrices(gamma_1, gamma_2): # pylint:disable=arguments-differ
r"""Kraus matrices representing the ``QutritAmplitudeDamping`` channel.
Args:
gamma_1 (float): :math:`|1\rangle \rightarrow |0\rangle` amplitude damping probability.
gamma_2 (float): :math:`|2\rangle \rightarrow |0\rangle` amplitude damping probability.
Returns:
list(array): list of Kraus matrices
**Example**
>>> qml.QutritAmplitudeDamping.compute_kraus_matrices(0.5, 0.25)
[
array([ [1. , 0. , 0. ],
[0. , 0.70710678, 0. ],
[0. , 0. , 0.8660254 ]]),
array([ [0. , 0.70710678, 0. ],
[0. , 0. , 0. ],
[0. , 0. , 0. ]]),
array([ [0. , 0. , 0.5 ],
[0. , 0. , 0. ],
[0. , 0. , 0. ]])
]
"""
K0 = math.diag([1, math.sqrt(1 - gamma_1 + math.eps), math.sqrt(1 - gamma_2 + math.eps)])
K1 = math.sqrt(gamma_1 + math.eps) * math.convert_like(
math.cast_like(math.array([[0, 1, 0], [0, 0, 0], [0, 0, 0]]), gamma_1), gamma_1
)
K2 = math.sqrt(gamma_2 + math.eps) * math.convert_like(
math.cast_like(math.array([[0, 0, 1], [0, 0, 0], [0, 0, 0]]), gamma_2), gamma_2
)
return [K0, K1, K2]
119 changes: 105 additions & 14 deletions tests/ops/qutrit/test_qutrit_channel_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
from numpy.linalg import matrix_power

import pennylane as qml
from pennylane import math
from pennylane import numpy as pnp
from pennylane.ops.qutrit import channel

Expand Down Expand Up @@ -74,7 +75,7 @@ def test_grad_depolarizing(self, angle):
dev = qml.device("default.qutrit.mixed")
prob = pnp.array(0.5, requires_grad=True)

@qml.qnode(dev)
@qml.qnode(dev, diff_method="parameter-shift")
def circuit(p):
qml.TRX(angle, wires=0, subspace=(0, 1))
qml.TRX(angle, wires=0, subspace=(1, 2))
Expand Down Expand Up @@ -113,28 +114,24 @@ def expected_jac_fn(p):
@staticmethod
def kraus_fn(p):
"""Gets a matrix of the Kraus matrices to be tested."""
return qml.math.stack(channel.QutritDepolarizingChannel(p, wires=0).kraus_matrices())
return math.stack(channel.QutritDepolarizingChannel(p, wires=0).kraus_matrices())

@staticmethod
def kraus_fn_real(p):
"""Gets a matrix of the real part of the Kraus matrices to be tested."""
return qml.math.real(
qml.math.stack(channel.QutritDepolarizingChannel(p, wires=0).kraus_matrices())
)
return math.real(math.stack(channel.QutritDepolarizingChannel(p, wires=0).kraus_matrices()))

@staticmethod
def kraus_fn_imag(p):
"""Gets a matrix of the imaginary part of the Kraus matrices to be tested."""
return qml.math.imag(
qml.math.stack(channel.QutritDepolarizingChannel(p, wires=0).kraus_matrices())
)
return math.imag(math.stack(channel.QutritDepolarizingChannel(p, wires=0).kraus_matrices()))

@pytest.mark.autograd
def test_kraus_jac_autograd(self):
"""Tests Jacobian of Kraus matrices using autograd."""
p = pnp.array(0.43, requires_grad=True)
jac = qml.jacobian(self.kraus_fn_real)(p) + 1j * qml.jacobian(self.kraus_fn_imag)(p)
assert qml.math.allclose(jac, self.expected_jac_fn(p))
assert math.allclose(jac, self.expected_jac_fn(p))

@pytest.mark.torch
def test_kraus_jac_torch(self):
Expand All @@ -144,7 +141,7 @@ def test_kraus_jac_torch(self):
p = torch.tensor(0.43, requires_grad=True)
jacobian = torch.autograd.functional.jacobian
jac = jacobian(self.kraus_fn_real, p) + 1j * jacobian(self.kraus_fn_imag, p)
assert qml.math.allclose(jac, self.expected_jac_fn(p.detach().numpy()))
assert math.allclose(jac, self.expected_jac_fn(p.detach().numpy()))

@pytest.mark.tf
def test_kraus_jac_tf(self):
Expand All @@ -157,10 +154,10 @@ def test_kraus_jac_tf(self):
with tf.GradientTape() as imag_tape:
imag_out = self.kraus_fn_imag(p)

real_jac = qml.math.cast(real_tape.jacobian(real_out, p), complex)
imag_jac = qml.math.cast(imag_tape.jacobian(imag_out, p), complex)
real_jac = math.cast(real_tape.jacobian(real_out, p), complex)
imag_jac = math.cast(imag_tape.jacobian(imag_out, p), complex)
jac = real_jac + 1j * imag_jac
assert qml.math.allclose(jac, self.expected_jac_fn(0.43))
assert math.allclose(jac, self.expected_jac_fn(0.43))

@pytest.mark.jax
def test_kraus_jac_jax(self):
Expand All @@ -171,4 +168,98 @@ def test_kraus_jac_jax(self):

p = jax.numpy.array(0.43, dtype=jax.numpy.complex128)
jac = jax.jacobian(self.kraus_fn, holomorphic=True)(p)
assert qml.math.allclose(jac, self.expected_jac_fn(p))
assert math.allclose(jac, self.expected_jac_fn(p))


class TestQutritAmplitudeDamping:
"""Tests for the qutrit quantum channel QutritAmplitudeDamping"""

def test_gamma_zero(self, tol):
"""Test gamma_1=gamma_2=0 gives correct Kraus matrices"""
kraus_mats = qml.QutritAmplitudeDamping(0, 0, wires=0).kraus_matrices()
assert np.allclose(kraus_mats[0], np.eye(3), atol=tol, rtol=0)
assert np.allclose(kraus_mats[1], np.zeros((3, 3)), atol=tol, rtol=0)
assert np.allclose(kraus_mats[2], np.zeros((3, 3)), atol=tol, rtol=0)

@pytest.mark.parametrize("gamma1,gamma2", ((0.1, 0.2), (0.75, 0.75)))
def test_gamma_arbitrary(self, gamma1, gamma2, tol):
"""Test the correct Kraus matrices are returned, also ensures that the sum of gammas can be over 1."""
K_0 = np.diag((1, np.sqrt(1 - gamma1), np.sqrt(1 - gamma2)))

K_1 = np.zeros((3, 3))
K_1[0, 1] = np.sqrt(gamma1)

K_2 = np.zeros((3, 3))
K_2[0, 2] = np.sqrt(gamma2)

expected = [K_0, K_1, K_2]
damping_channel = qml.QutritAmplitudeDamping(gamma1, gamma2, wires=0)
assert np.allclose(damping_channel.kraus_matrices(), expected, atol=tol, rtol=0)

@pytest.mark.parametrize("gamma1,gamma2", ((1.5, 0.0), (0.0, 1.0 + math.eps)))
def test_gamma_invalid_parameter(self, gamma1, gamma2):
"""Ensures that error is thrown when gamma_1 or gamma_2 are outside [0,1]"""
with pytest.raises(ValueError, match="Each probability must be in the interval"):
channel.QutritAmplitudeDamping(gamma1, gamma2, wires=0).kraus_matrices()

@staticmethod
def expected_jac_fn(gamma_1, gamma_2):
"""Gets the expected Jacobian of Kraus matrices"""
partial_1 = [math.zeros((3, 3)) for _ in range(3)]
partial_1[0][1, 1] = -1 / (2 * math.sqrt(1 - gamma_1))
partial_1[1][0, 1] = 1 / (2 * math.sqrt(gamma_1))

partial_2 = [math.zeros((3, 3)) for _ in range(3)]
partial_2[0][2, 2] = -1 / (2 * math.sqrt(1 - gamma_2))
partial_2[2][0, 2] = 1 / (2 * math.sqrt(gamma_2))

return [partial_1, partial_2]

@staticmethod
def kraus_fn(gamma_1, gamma_2):
"""Gets the Kraus matrices of QutritAmplitudeDamping channel, used for differentiation."""
damping_channel = qml.QutritAmplitudeDamping(gamma_1, gamma_2, wires=0)
return math.stack(damping_channel.kraus_matrices())

@pytest.mark.autograd
def test_kraus_jac_autograd(self):
"""Tests Jacobian of Kraus matrices using autograd."""
gamma_1 = pnp.array(0.43, requires_grad=True)
gamma_2 = pnp.array(0.12, requires_grad=True)
jac = qml.jacobian(self.kraus_fn)(gamma_1, gamma_2)
assert math.allclose(jac, self.expected_jac_fn(gamma_1, gamma_2))

@pytest.mark.torch
def test_kraus_jac_torch(self):
"""Tests Jacobian of Kraus matrices using PyTorch."""
import torch

gamma_1 = torch.tensor(0.43, requires_grad=True)
gamma_2 = torch.tensor(0.12, requires_grad=True)

jac = torch.autograd.functional.jacobian(self.kraus_fn, (gamma_1, gamma_2))
expected = self.expected_jac_fn(gamma_1.detach().numpy(), gamma_2.detach().numpy())
assert math.allclose(jac[0].detach().numpy(), expected[0])
assert math.allclose(jac[1].detach().numpy(), expected[1])

@pytest.mark.tf
def test_kraus_jac_tf(self):
"""Tests Jacobian of Kraus matrices using TensorFlow."""
import tensorflow as tf

gamma_1 = tf.Variable(0.43)
gamma_2 = tf.Variable(0.12)
with tf.GradientTape() as tape:
out = self.kraus_fn(gamma_1, gamma_2)
jac = tape.jacobian(out, (gamma_1, gamma_2))
assert math.allclose(jac, self.expected_jac_fn(gamma_1, gamma_2))

@pytest.mark.jax
def test_kraus_jac_jax(self):
"""Tests Jacobian of Kraus matrices using JAX."""
import jax

gamma_1 = jax.numpy.array(0.43)
gamma_2 = jax.numpy.array(0.12)
jac = jax.jacobian(self.kraus_fn, argnums=[0, 1])(gamma_1, gamma_2)
assert math.allclose(jac, self.expected_jac_fn(gamma_1, gamma_2))

0 comments on commit fdca352

Please sign in to comment.