- 代码和作业报告会在作业截止后上传.
(如果我没有中期退课的话) - PDF 里的链接在 Github 上是点不了的, 下载到本地就能点了.
- Codes and report will be updated once the assignment is due.
(if I do not quit in the midterm, I mean) - Hyperlinks in PDF file could not be clicked in Github preview page, so you may want to download it before happily accessing them.
- 滑动窗口卷积 & Toeplitz 矩阵 (禁止使用 for 循环的 Numpy 练习);
- Canny 边缘检测;
- Harris 角点检测;
- RANSAC 算法在平面拟合的应用;
- 多层感知机 (MLP) 的反向传播算法.
- Convolution via sliding window & Convolution using Toeplitz matrix (for-loops are banned for Numpy practice);
- Canny Edge Detector;
- Harris Corner Detector;
- RANSAC algorithm for plane-fitting;
- Implement backpropagation for multi-layer perceptron (MLP).
- 实现 MLP 的 BatchNorm 层, 包括训练前向、测试前向和反向传播;
- 在 CIFAR-10 数据集上搭建一个卷积神经网络, 并通过调参、数据增加等技巧提高网络性能;
- 透视投影相机的矫正.
- Implement BatchNorm layer for MLP, including train-time forward, test-time forward and backpropagation;
- Build and train a CNN on CIFAR-10, and further improve it via tricks like parameter-tunning and data-augmentation;
- Camera calibration: Solving the intrinsic matrix K and extrinsic matrix [R, T] of a perspective camera;
- 将一个透视投影的深度图转换为点云表示;
- 使用均匀采样 & 最远距离点采样在三角网面上进行点云的采样; 使用 「Earth Mover 距离」 和 「Chamfer 距离」 衡量点云之间的距离;
- 实现一种将隐式模型表示转换为三角网面表示的算法——Marching Cube 算法;
- 实现经典的可处理 3D 点云的深度学习模型——PointNet;
- 应用 Mask RCNN 算法在自己定义的一个数据集上, 并使用 mAP 对模型效果进行评价;
- Transform a depth image to a point cloud;
- Implement Uniform-sampling & Furthest-point-sampling Algorithm for sampling on mesh; Use EMD & CD to measure distance between point clouds;
- Implement marching-cube algorithm, which can transform the implicit representation of a 3D-model to mesh representation;
- Implement the classic deeplearning model for 3D point-cloud learning: PointNet;
- Finetune a Mask RCNN model to fit a self-defined dataset, and then use mAP to evaluate the model's performance;