Skip to content

This project uses Cifar-10 dataset to classify the images into 10 different classes

Notifications You must be signed in to change notification settings

PranayChuramani21/Image-Classification-Project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 

Repository files navigation

Image Classification Project

The CIFAR-10 dataset is an established computer-vision dataset used for object recognition that is widely used to train the ML Algorithms. The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50,000 training images and 10,000 test images.

Description

  • We are Building a classifier for classifying 10,000 images into ten distinct classes that include the images of ten different animals such as dogs, horses, cats, and so on using the CIFAR-10 Dataset.

  • For classification purposes, we have used a Supervised Learning Algorithm i.e., Random Forest

  • For reducing the dimensionality, we are using principal component analysis (PCA)

Technology Used

  • CIFAR-10 Dataset
  • Supervised Learning
  • Principal Component Analysis (PCA)
  • Random Forest
  • Classification Report

About

This project uses Cifar-10 dataset to classify the images into 10 different classes

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published