Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix GCMC Invalid Key Error #533

Merged
merged 3 commits into from
Oct 19, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 76 additions & 1 deletion cornac/models/gcmc/gcmc.py
Original file line number Diff line number Diff line change
Expand Up @@ -133,6 +133,41 @@ def _generate_dec_graph(data_set):
)


def _generate_test_user_graph(user_idx, total_users, total_items):
"""
Generates decoding graph given a cornac data set

Parameters
----------
data_set : cornac.data.dataset.Dataset
The data set as provided by cornac

Returns
-------
graph : dgl.heterograph
Heterograph containing user-item edges and nodes
"""
u_list = np.array([user_idx for _ in range(total_items)])
i_list = np.array([item_idx for item_idx in range(total_items)])

rating_pairs = (u_list, i_list)
ones = np.ones_like(rating_pairs[0])
user_item_ratings_coo = sp.coo_matrix(
(ones, rating_pairs),
shape=(total_users, total_items),
dtype=np.float32,
)

graph = dgl.bipartite_from_scipy(
user_item_ratings_coo, utype="_U", etype="_E", vtype="_V"
)

return dgl.heterograph(
{("user", "rate", "item"): graph.edges()},
num_nodes_dict={"user": total_users, "item": total_items},
)


class Model:
def __init__(
self,
Expand Down Expand Up @@ -479,7 +514,11 @@ def predict(self, test_set):

test_pred_ratings = test_pred_ratings.cpu().numpy()

(u_list, i_list, _) = test_set.uir_tuple
uid_list = test_set.uir_tuple[0]
uid_list = np.unique(uid_list)

u_list = np.array([user_idx for _ in range(test_set.total_items) for user_idx in uid_list])
i_list = np.array([item_idx for item_idx in range(test_set.total_items) for _ in uid_list])

u_list = u_list.tolist()
i_list = i_list.tolist()
Expand All @@ -489,3 +528,39 @@ def predict(self, test_set):
for idx, rating in enumerate(test_pred_ratings)
}
return u_i_rating_dict

def predict_one(self, train_set, user_idx):
"""
Processes single user_idx from test set and returns numpy list of scores
for all items.

Parameters
----------
train_set : cornac.data.dataset.Dataset
The train set as provided by cornac

Returns
-------
test_pred_ratings : numpy.array
Numpy array containing all ratings for the given user_idx.
"""
test_dec_graph = _generate_test_user_graph(user_idx, train_set.total_users, train_set.total_items)
test_dec_graph = test_dec_graph.int().to(self.device)

self.net.eval()

with torch.no_grad():
pred_ratings = self.net(self.train_enc_graph, test_dec_graph)

test_rating_values = train_set.uir_tuple[2]
test_rating_values = np.unique(test_rating_values)

nd_positive_rating_values = torch.FloatTensor(test_rating_values).to(
self.device
)

test_pred_ratings = (
torch.softmax(pred_ratings, dim=1) * nd_positive_rating_values.view(1, -1)
).sum(dim=1)

return test_pred_ratings.cpu().numpy()
7 changes: 1 addition & 6 deletions cornac/models/gcmc/recom_gcmc.py
Original file line number Diff line number Diff line change
Expand Up @@ -213,11 +213,6 @@ def score(self, user_idx, item_idx=None):
"""
if item_idx is None:
# Return scores of all items for a given user
# - If item does not exist in test_set, we provide a default score
# (as set in default_dict initialisation)
return [
self.u_i_rating_dict[f"{user_idx}-{idx}"]
for idx in range(self.train_set.total_items)
]
return self.model.predict_one(self.train_set, user_idx)
# Return score of known user/item
return self.u_i_rating_dict.get(f"{user_idx}-{item_idx}", self.default_score())
Loading