Skip to content

Implement Machine learning algorithm by myself using Python 3.6

License

Notifications You must be signed in to change notification settings

ProblemTryer/MachineLearning

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MachineLearning

GPL-3.0 Licensed Python Version
Machine learning algorithms implemented by myself with Python 3.6

What's in it?

  • Classification
  1. AdaBoost
  2. Blending
  3. DecisionTree
  4. GBDT
  5. KNN
  6. LogisticRegression
  7. NaiveBayes
  8. Perceptron
  9. RandomForest
  10. Stacking
  11. SVM
  • Regression
  1. GBDT
  2. LinearRegression
  3. LocallyWeightedLinearRegression
  4. LassoRegression
  5. RandomForest
  6. RidgeRegression
  7. StepWiseRegression
  8. TreeRegression
  • Cluster
  1. BiKmeans
  2. DBSCAN
  3. KMeans
  4. KMeans++
  • Association Analysis
  1. Apriori
  2. Eclat
  3. FP-growth
  • Dimensionality Reduction
  1. LDA
  2. PCA
  • Others
  1. HMM

Tutorials

中文教程: 从零实现机器学习算法
English Turorials: Step-by-Step Guide To Implement Machine Learning

Main References

  1. CS229:Machine Learning
  2. Machine Learning IN ACTION
  3. 统计学习方法

Dependences

  1. Install Python 3.6
  2. Install NumPy
  3. Install Scikit-learn

About

Implement Machine learning algorithm by myself using Python 3.6

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%