Skip to content

Explore lightweight practices for monocular 3D detection // 探索单目3D检测的轻量级实践

Notifications You must be signed in to change notification settings

Puiching-Memory/monolite

Repository files navigation

MonoLite

Explore lightweight practices for monocular 3D inspection

探索单目3D检测的轻量级实践

[中文][English]

Abstract摘要

Note that we are an engineering project, the code will be updated synchronously, currently in the early stages of the project, if you want to help, please check out our projects!

注意,我们是工程化项目,代码会同步更新,目前处于项目的早期阶段,如果你想提供帮助,请查阅我们的projects!

multimedia\model_map.webp

Activity活动

Alt

Design架构设计

我们将神经网络训练中最重要的部件分离了出来,而其他针对模型的操作,如训练/测试/评估/导出,则作为一种任务文件被不同的实验共用。

Experiment实验

Model Dataset info
MonoLite Kitti

Torch info

Model Input size (MB) Params size (MB) Total params Total mult-adds
MonoLite 94.37 109.04 27,260,609 903.20

性能测试

*We used the BN layer, so a value of >=2 is recommended

Task GPU(GB) RAM(GB) Batch size Speed(it/s)
train 1.2 2.2 1
train 1.8 2.2 2
eval 2.2 2.0 1 43

Environment环境

虚拟环境

依据此pytorch_issue中的讨论,我们将虚拟环境迁移至miniforge

conda create -n monolite python=3.12

前置组件

系统 组件 下载URL 备注
windows Visual Studio 2022 download 注意不同版本间的冲突
windows Cmake download 3.30.5
windows MSbuild 通过VS2022下载
windows MSVC 通过VS2022下载 手动添加至环境变量PATH

pip

pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124
pip install -r requirements.txt

Docker(暂不可用)

set DOCKER_BUILDKIT=0
docker build -t monolite .
docker run -d  --privileged=true --net host --name {any_name} --shm-size 4G --ulimit memlock=-1 --gpus=all -it -v C:\:/windows/ monolite:latest /bin/bash

Docker mirror

https://github.com/DaoCloud/public-image-mirror

Dataset数据集

Kitti

TODO

Pre-training model zoo预训练模型

Model URL Trainning log
MonoLite_Baseline [百度网盘][谷歌网盘] https://swanlab.cn/@Sail2Dream/monolite/overview

Inference推理

python tools\detect.py --cfg C:\workspace\github\monolite\experiment\monolite_YOLO11_centernet

Train训练

python tools\train.py --cfg C:\workspace\github\monolite\experiment\monolite_YOLO11_centernet

Train with your own Dataset自定义数据集训练

TODO

Eval评估

TODO

Export导出

ONNX

python tools\export_onnx.py --cfg C:\workspace\github\monolite\experiment\monolite_YOLO11_centernet

TensorRT

torchscript
python tools\export_ts.py --cfg C:\workspace\github\monolite\experiment\monolite_YOLO11_centernet
exported_program
python tools\export_ep.py --cfg C:\workspace\github\monolite\experiment\monolite_YOLO11_centernet

Torch_JIT

python tools\export_pt.py --cfg C:\workspace\github\monolite\experiment\monolite_YOLO11_centernet

Confirm致谢

我们衷心感谢所有为这个神经网络开源项目做出贡献的个人和组织。特别感谢以下贡献者:

type name url title
CVPR 2021 MonoDLE monodle github Delving into Localization Errors for Monocular 3D Object Detection
3DV 2024 MonoLSS monolss github Learnable Sample Selection For Monocular 3D Detection
TTFNet
community kitti_object_vis kitti_vis github KITTI Object Visualization (Birdview, Volumetric LiDar point cloud )
community mmdet3d mmdet3d github OpenMMLab's next-generation platform for general 3D object detection.
community ultralytics ultralytics github YOLOv8/v11+v9/v10
community netron netron web Visualizer for neural network, deep learning and machine learning models
community mkdocs-material mkdocs github Documentation that simply works

正是这种协作和共享的精神,让开源项目得以蓬勃发展,并为科技进步做出贡献。我们期待未来有更多的合作和创新,共同推动人工智能领域的发展。

再次感谢每一位支持者,你们的贡献是无价的。

About

Explore lightweight practices for monocular 3D detection // 探索单目3D检测的轻量级实践

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages