-
-
Notifications
You must be signed in to change notification settings - Fork 121
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: add HQQ quantization support (#795)
* feat: add HQQ quantization support * modify gptq_marlin kernels to support hqq * fix: windows compilation * formatting
- Loading branch information
Showing
11 changed files
with
766 additions
and
85 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,279 @@ | ||
from typing import Any, Dict, List, Optional, Tuple | ||
|
||
import torch | ||
|
||
from aphrodite import _custom_ops as ops | ||
from aphrodite.modeling.layers.linear import LinearBase, LinearMethodBase | ||
from aphrodite.modeling.parameter import (BaseAphroditeParameter, | ||
HQQQweightParameter, | ||
HQQZeroScaleParameter) | ||
from aphrodite.modeling.utils import set_weight_attrs | ||
from aphrodite.quantization.base_config import QuantizationConfig | ||
from aphrodite.quantization.utils.marlin_utils import ( | ||
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N, | ||
marlin_make_empty_g_idx, marlin_permute_scales) | ||
from aphrodite.quantization.utils.marlin_utils_test import MarlinWorkspace | ||
from aphrodite.quantization.utils.quant_utils import gptq_pack | ||
from aphrodite.scalar_type import scalar_types | ||
|
||
|
||
class HQQMarlinConfig(QuantizationConfig): | ||
"""Config class for HQQ Marlin""" | ||
|
||
# (num_bits, is_sym) -> quant_type | ||
TYPE_MAP = { | ||
4: scalar_types.uint4, | ||
8: scalar_types.uint8, | ||
} | ||
|
||
def __init__( | ||
self, | ||
weight_bits: int, | ||
group_size: int, | ||
) -> None: | ||
self.pack_factor = 8 // weight_bits # packed into uint8 | ||
self.group_size = group_size | ||
self.quant_type = self.TYPE_MAP[(weight_bits)] | ||
|
||
def __repr__(self) -> str: | ||
return (f"HQQMarlinConfig(quant_type={self.quant_type}, " | ||
f"group_size={self.group_size})") | ||
|
||
@classmethod | ||
def get_name(cls) -> str: | ||
return "hqq" | ||
|
||
@classmethod | ||
def get_supported_act_dtypes(cls) -> List[torch.dtype]: | ||
return [torch.half, torch.bfloat16] | ||
|
||
@classmethod | ||
def get_min_capability(cls) -> int: | ||
return 80 | ||
|
||
@classmethod | ||
def get_config_filenames(cls) -> List[str]: | ||
return ["quantize_config.json"] | ||
|
||
@classmethod | ||
def from_config(cls, config: Dict[str, Any]) -> "HQQMarlinConfig": | ||
wq_params = (config["quant_config"]["weight_quant_params"]) | ||
weight_bits = cls.get_from_keys(wq_params, ["nbits"]) | ||
group_size = cls.get_from_keys(wq_params, ["group_size"]) | ||
return cls(weight_bits, group_size) | ||
|
||
@classmethod | ||
def override_quantization_method(cls, hf_quant_cfg, | ||
user_quant) -> Optional[str]: | ||
#TODO | ||
return None | ||
|
||
def get_quant_method(self, layer: torch.nn.Module, | ||
prefix: str) -> Optional["HQQMarlinMethod"]: | ||
if isinstance(layer, LinearBase): | ||
return HQQMarlinMethod(self) | ||
return None | ||
|
||
def get_scaled_act_names(self) -> List[str]: | ||
return [] | ||
|
||
|
||
# Empty HQQ parameter, will be ignored during loading | ||
class HQQEmptyParameter(BaseAphroditeParameter): | ||
|
||
def load_merged_column_weight(self, loaded_weight: torch.Tensor, **kwargs): | ||
pass | ||
|
||
def load_row_parallel_weight(self, loaded_weight: torch.Tensor): | ||
pass | ||
|
||
def load_qkv_weight(self, loaded_weight: torch.Tensor, **kwargs): | ||
pass | ||
|
||
|
||
def error_loader(param: torch.Tensor, loaded_weight: torch.Tensor) -> None: | ||
raise ValueError("No loader provided for HQQ parameter!") | ||
|
||
|
||
class HQQMarlinMethod(LinearMethodBase): | ||
"""Linear method for HQQ Marlin. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
quant_config: HQQMarlinConfig, | ||
): | ||
self.quant_config = quant_config | ||
|
||
def create_weights( | ||
self, | ||
layer: torch.nn.Module, | ||
input_size_per_partition: int, | ||
output_partition_sizes: List[int], | ||
input_size: int, | ||
output_size: int, | ||
params_dtype: torch.dtype, | ||
**extra_weight_attrs, | ||
) -> None: | ||
self.output_size_per_partition = sum(output_partition_sizes) | ||
|
||
self.input_size_per_partition = input_size_per_partition | ||
|
||
weight_loader = extra_weight_attrs.get("weight_loader", error_loader) | ||
|
||
self.scales_and_zp_size = (input_size_per_partition // | ||
self.quant_config.group_size) | ||
|
||
# Quantized weights | ||
qweight = HQQQweightParameter( | ||
data=torch.empty( | ||
self.output_size_per_partition // | ||
self.quant_config.pack_factor, | ||
input_size_per_partition, | ||
dtype=torch.uint8, | ||
), | ||
input_dim=1, | ||
output_dim=0, | ||
packed_dim=0, | ||
packed_factor=self.quant_config.pack_factor, | ||
weight_loader=weight_loader) | ||
|
||
set_weight_attrs(qweight, { | ||
"is_hqq_weight": True, | ||
"shard_offsets:": [], | ||
}) | ||
|
||
zeros = HQQZeroScaleParameter(data=torch.empty( | ||
self.output_size_per_partition, | ||
self.scales_and_zp_size, | ||
dtype=params_dtype, | ||
), | ||
input_dim=1, | ||
output_dim=0, | ||
weight_loader=weight_loader) | ||
|
||
scales = HQQZeroScaleParameter(data=torch.empty( | ||
self.output_size_per_partition, | ||
self.scales_and_zp_size, | ||
dtype=params_dtype, | ||
), | ||
input_dim=1, | ||
output_dim=0, | ||
weight_loader=weight_loader) | ||
|
||
layer.register_parameter("W_q", qweight) | ||
layer.register_parameter("zero", zeros) | ||
layer.register_parameter("scale", scales) | ||
|
||
# Ignore extra parameters in the HQQ model. | ||
# To be added as needed. | ||
ignore_parameters = ("axis", "channel_wise", "compute_dtype", | ||
"encoded_state_dict", "group_size", "nbits", | ||
"offload_meta", "optimize", "packing", | ||
"quant_scale", "quant_zero", "round_zero", | ||
"shape", "stores_quant_config", | ||
"unpack_view_dtype", "view_as_float") | ||
for name in ignore_parameters: | ||
layer.register_parameter( | ||
name, | ||
HQQEmptyParameter(data=torch.empty(0), | ||
weight_loader=weight_loader)) | ||
|
||
# Unpack weights from the HQQ format and repack them to GPTQ -> Marlin | ||
def process_weights_after_loading(self, layer: torch.nn.Module) -> None: | ||
dev = layer.W_q.device | ||
|
||
# unpack function from https://github.com/mobiusml/hqq | ||
def unpack_4bit_u8( | ||
W_q: torch.Tensor, | ||
shard_offsets: List[Tuple[int, int]], | ||
) -> torch.Tensor: # uint8/2 > uint8 | ||
dtype = torch.uint8 | ||
tmp = torch.empty([2 * W_q.shape[0], W_q.shape[1]], | ||
dtype=dtype, | ||
device=W_q.device) | ||
for (offset, size) in shard_offsets: | ||
tmp_offset = 2 * offset | ||
tmp[tmp_offset:tmp_offset + | ||
size] = (W_q[offset:offset + size] & 0b11110000) >> 4 | ||
tmp[tmp_offset + size:tmp_offset + | ||
2 * size] = (W_q[offset:offset + size] & 0b00001111) | ||
return tmp | ||
|
||
# Unpack from 4-bit to 8-bit | ||
shard_offsets = getattr(layer.W_q, "shard_offsets", []) | ||
qweight_t = unpack_4bit_u8(layer.W_q, shard_offsets).transpose(1, 0) | ||
|
||
# Repack to GPTQ | ||
gptq_w_q = gptq_pack(qweight_t, 4, self.input_size_per_partition, | ||
self.output_size_per_partition) | ||
|
||
# Repack to Marlin | ||
sort_indices = torch.empty(0, dtype=torch.int, device=gptq_w_q.device) | ||
marlin_w_q = ops.gptq_marlin_repack( | ||
gptq_w_q, | ||
sort_indices, | ||
self.input_size_per_partition, | ||
self.output_size_per_partition, | ||
4, | ||
).to(dev) | ||
marlin_s = marlin_permute_scales(layer.scale.transpose(1, 0), | ||
self.input_size_per_partition, | ||
self.output_size_per_partition, | ||
self.quant_config.group_size).to(dev) | ||
marlin_zp = marlin_permute_scales(layer.zero.transpose(1, 0), | ||
self.input_size_per_partition, | ||
self.output_size_per_partition, | ||
self.quant_config.group_size).to(dev) | ||
|
||
layer.g_idx = marlin_make_empty_g_idx(dev) | ||
layer.g_idx_sort_indices = marlin_make_empty_g_idx(dev) | ||
|
||
layer.marlin_qweight = marlin_w_q | ||
layer.marlin_zeros = marlin_zp | ||
layer.marlin_scales = marlin_s | ||
|
||
def apply( | ||
self, | ||
layer: torch.nn.Module, | ||
x: torch.Tensor, | ||
bias: Optional[torch.Tensor] = None, | ||
) -> torch.Tensor: | ||
workspace = MarlinWorkspace(self.output_size_per_partition, | ||
GPTQ_MARLIN_MIN_THREAD_N, | ||
GPTQ_MARLIN_MAX_PARALLEL) | ||
|
||
scales = layer.marlin_scales | ||
zeros = layer.marlin_zeros | ||
orig_type = x.dtype | ||
|
||
if orig_type != torch.float16: | ||
x = x.to(torch.float16) | ||
scales = scales.to(torch.float16) | ||
zeros = zeros.to(torch.float16) | ||
|
||
marlin_out = ops.gptq_marlin_gemm( | ||
x, | ||
layer.marlin_qweight, | ||
scales, | ||
zeros, | ||
layer.g_idx, | ||
layer.g_idx_sort_indices, | ||
workspace.scratch, | ||
scalar_types.uint4, | ||
x.shape[0], | ||
self.output_size_per_partition, | ||
self.input_size_per_partition, | ||
True, # is_k_full | ||
True, # has_zp | ||
False, # use 32-bit reduce | ||
True, # use float zp | ||
) | ||
|
||
if bias is not None: | ||
marlin_out.add_(bias) | ||
|
||
if orig_type != torch.float16: | ||
return marlin_out.to(orig_type) | ||
else: | ||
return marlin_out |
Oops, something went wrong.