-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
haoning.wu
committed
Dec 13, 2023
1 parent
4a163b8
commit c3627ab
Showing
1 changed file
with
44 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
### Install mPLUG-Owl from https://github.com/X-PLUG/mPLUG-Owl/tree/main/mPLUG-Owl2#install | ||
|
||
import torch.nn as nn | ||
import torch | ||
|
||
from typing import List | ||
from PIL import Image | ||
|
||
from mplug_owl2.model.builder import load_pretrained_model | ||
|
||
from mplug_owl2.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN | ||
from mplug_owl2.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria | ||
|
||
|
||
class QInstructScorer(nn.Module): | ||
def __init__(self, boost=True, device="cuda:0"): | ||
super().__init__() | ||
tokenizer, model, image_processor, _ = load_pretrained_model("teowu/mplug_owl2_7b_448_qinstruct_preview_v0.2", None, "mplug_owl2", device=device) | ||
prompt = "USER: <|image|>Rate the quality of the image.\nASSISTANT: " | ||
|
||
if not boost: | ||
self.preferential_ids_ = [id_[1] for id_ in tokenizer(["good", "average", "poor"])["input_ids"]] | ||
self.weight_tensor = torch.Tensor([1, 0.5, 0]).half().to(model.device) | ||
else: | ||
self.preferential_ids_ = [id_[1] for id_ in tokenizer(["good", "average", "poor", "high", "medium", "low", "fine", "acceptable", "bad"])["input_ids"]] | ||
self.weight_tensor = torch.Tensor([1, 0.5, 0, 1, 0.5, 0, 1, 0.5, 0]).half().to(model.device) / 3. | ||
|
||
self.tokenizer = tokenizer | ||
self.model = model | ||
self.image_processor = image_processor | ||
self.input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device) | ||
|
||
def forward(self, image: List[Image.Image]): | ||
with torch.inference_mode(): | ||
image_tensor = self.image_processor.preprocess(image, return_tensors="pt")["pixel_values"].half().to(self.model.device) | ||
output_logits = self.model(self.input_ids.repeat(image_tensor.shape[0], 1), | ||
images=image_tensor)["logits"][:,-1, self.preferential_ids_] | ||
|
||
return torch.softmax(output_logits, -1) @ self.weight_tensor | ||
|
||
|
||
if __name__ == "__main__": | ||
scorer = QInstructScorer(boost=False) | ||
print(scorer([Image.open("fig/examples_211.jpg"),Image.open("fig/sausage.jpg")]).tolist()) |