arcgisutils is designed as the backbone of the
{arcgis}
meta-package.
arcgisutils is a developer oriented package that provides the basic functions to build R packages that work with ArcGIS Location Services. It provides functionality for:
- authorization,
- Esri JSON construction and parsing,
- structuring ArcGIS REST API requests,
- Esri type conversions,
- among other utilities
Install arcgisutils from CRAN.
install.packages("arcgisutils", repos = "https://r-arcgis.r-universe.dev")
Or, you can install the development version of arcgisutils r-universe with:
install.packages("arcgisutils", repos = "https://r-arcgis.r-universe.dev")
Authorization tokens are provided through the functions auth_code()
,
auth_client()
, auth_user()
, and auth_binding()
. Additional token
validation functions are provided via refresh_token()
and
validate_or_refresh_token()
.
Tokens are managed in a session based cache using set_arc_token()
and
unset_arc_token()
. They are fetched using arc_token()
. Here is a
minimal example:
library(arcgisutils)
#>
#> Attaching package: 'arcgisutils'
#> The following object is masked from 'package:base':
#>
#> %||%
tkn <- auth_client()
set_arc_token(tkn)
arc_token()
#> <httr2_token>
#> token_type: bearer
#> access_token: <REDACTED>
#> expires_at: 2024-07-11 09:40:56
#> arcgis_host: https://www.arcgis.com
Alternatively, tokens can be set based on a key-value pair.
set_arc_token("A" = tkn, "B" = tkn)
#> ✔ Named tokens set: `A` and `B`
#> ℹ Access named tokens with `arc_token("name")`
And fetched based on their name via
arc_token("A")
#> <httr2_token>
#> token_type: bearer
#> access_token: <REDACTED>
#> expires_at: 2024-07-11 09:40:56
#> arcgis_host: https://www.arcgis.com
The function arc_base_req()
is used to create a standardized httr2
request object. It handles authorization tokens and sets a user agent.
host <- arc_host() # use arcgis.com by default
arc_base_req(host)
#> <httr2_request>
#> GET https://www.arcgis.com
#> Body: empty
#> Options:
#> • useragent: 'arcgisutils v0.3.0'
There are also a number of utility functions for creating and parsing
Esri JSON. For example we can create a list that represent an Esri
FeatureSet
using as_featurset()
directly from an sf
object. To
convert to json, it is recommended to use
jsonify::to_json(x, unbox = TRUE)
.
library(sf)
#> Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0; sf_use_s2() is TRUE
nc <- st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)
nc_json <- as_featureset(nc)
str(nc_json, 1)
#> List of 3
#> $ geometryType : chr "esriGeometryPolygon"
#> $ spatialReference:List of 1
#> $ features :List of 100
Alternatively, you can use the set of functions with the _esri_
infix
to directly create the json. See the Esri geometry reference
page for
more on how the conversion functions work.
Additionally, sf’s crs
object can be converted to a
spatialReference
JSON object using validate_crs()
.
validate_crs(27700)
#> $spatialReference
#> $spatialReference$wkid
#> [1] 27700