Skip to content

Latest commit

 

History

History
399 lines (353 loc) · 16.6 KB

CLIMR_bif-valence-pretest_report.md

File metadata and controls

399 lines (353 loc) · 16.6 KB

Construal Level International Multilab Replication (CLIMR) Project: Pretest of Valence Differences in BIF Item Response Options

CLIMR Team 2022-12-16

Overview

The documentation for this pretest is provided here: https://osf.io/g6d5v

Separate Judgments of Item Response Options

When judged separately, the response options for each item are generally rated such that the abstract option is more positively valenced than the concrete option.

bif_d_sep %>% 
  knitr::kable()
item d var ci_lower ci_upper
bif_01 0.9413056 0.0074075 0.7722754 1.1103358
bif_02 2.1128505 0.0103992 1.9125748 2.3131263
bif_03 0.6141789 0.0069821 0.4500746 0.7782832
bif_04 0.1974207 0.0066993 0.0366743 0.3581671
bif_05 0.7535554 0.0071415 0.5875886 0.9195222
bif_06 1.0019380 0.0075060 0.8317875 1.1720884
bif_07 0.8409323 0.0072579 0.6736173 1.0082472
bif_08 0.2151093 0.0067054 0.0542897 0.3759288
bif_09 1.3391569 0.0081661 1.1616825 1.5166313
bif_10 0.6873452 0.0070617 0.5223079 0.8523825
bif_11 -0.0337728 0.0066676 -0.1941392 0.1265936
bif_12 1.0657412 0.0076163 0.8943451 1.2371373
bif_13 -0.3565716 0.0067730 -0.5182000 -0.1949432
bif_14 1.1470927 0.0077669 0.9740113 1.3201742
bif_15 0.2175529 0.0067062 0.0567227 0.3783831
bif_16 1.2953358 0.0080696 1.1189134 1.4717581
bif_17 0.7068331 0.0070844 0.5415305 0.8721356
bif_18 0.2825103 0.0067334 0.1213547 0.4436658
bif_19 0.9862716 0.0074800 0.8164166 1.1561266
bif_20 0.8836155 0.0073195 0.7155926 1.0516383
bif_21 0.0359620 0.0066677 -0.1244060 0.1963299
bif_22 0.9957628 0.0074957 0.8257293 1.1657963
bif_23 1.0221313 0.0075402 0.8515940 1.1926687
bif_24 1.1472808 0.0077672 0.9741953 1.3203662
bif_25 0.7709744 0.0071637 0.6047498 0.9371991

Combining across the items, the valence difference in response options appears to be non-trivial.

bif_scale_smd_sep
##           d          var  ci_lower  ci_upper
## 1 0.6701145 0.0002816371 0.6372197 0.7030094

Relative Judgments of Item Response Options

When judged relatively, the response options for each item are again generally rated such that the abstract option is more positively valenced than the concrete option.

bif_d_rel %>% 
  knitr::kable()
item d se ci_lower ci_upper m sd
bif_01 0.5982161 0.1161980 0.4847880 0.7116441 1.2059801 2.015961
bif_02 1.5147968 0.0871541 1.4011784 1.6284153 2.2866667 1.509553
bif_03 1.1224132 0.0876166 1.0087948 1.2360317 1.7033333 1.517564
bif_04 0.4089737 0.1105836 0.2953552 0.5225922 0.7833333 1.915364
bif_05 0.5250311 0.1084988 0.4114127 0.6386496 0.9866667 1.879254
bif_06 0.8758698 0.0874504 0.7622514 0.9894883 1.3266667 1.514685
bif_07 0.7377306 0.0967819 0.6241121 0.8513490 1.2366667 1.676312
bif_08 0.1876123 0.1118107 0.0739938 0.3012307 0.3633333 1.936618
bif_09 1.1421659 0.0901452 1.0285474 1.2557843 1.7833333 1.561361
bif_10 0.9844226 0.0930558 0.8708042 1.0980411 1.5866667 1.611774
bif_11 -0.0454410 0.1185845 -0.1590595 0.0681774 -0.0933333 2.053944
bif_12 1.3852819 0.0818267 1.2716635 1.4989004 1.9633333 1.417281
bif_13 0.6163511 0.1080354 0.5027326 0.7299695 1.1533333 1.871228
bif_14 0.6711846 0.0937614 0.5575661 0.7848030 1.0900000 1.623994
bif_15 0.9208700 0.0875657 0.8072515 1.0344885 1.3966667 1.516682
bif_16 1.3172455 0.0888290 1.2036270 1.4308640 2.0266667 1.538564
bif_17 0.7770732 0.1022837 0.6634547 0.8906916 1.3766667 1.771605
bif_18 0.7468055 0.1028214 0.6331870 0.8604239 1.3300000 1.780919
bif_19 0.5222942 0.1123836 0.4086757 0.6359127 1.0166667 1.946540
bif_20 1.1122755 0.0903184 0.9986570 1.2258940 1.7400000 1.564361
bif_21 0.4932722 0.1041700 0.3796537 0.6068907 0.8900000 1.804278
bif_22 0.9570535 0.0862659 0.8434351 1.0706720 1.4300000 1.494169
bif_23 0.7605244 0.1057746 0.6469060 0.8741429 1.3933333 1.832069
bif_24 1.0926688 0.0900017 0.9790503 1.2062873 1.7033333 1.558874
bif_25 1.0851368 0.0803400 0.9715184 1.1987553 1.5100000 1.391530

Combining across the items, the valence difference across items appears to be slightly larger for relative judgments than for separate judgments.

bif_scale_smd_rel
##           d         se  ci_lower  ci_upper        m       sd
## 1 0.7484497 0.02048004 0.7258158 0.7710835 1.327556 1.773742

There is a strong correspondence between the separate and relative judgments.

Item 13, which concerns voting, appeared to have discrepant results in the two judgment modes. This may be because the abstract option (“influencing an election”) could come across as nefarious when viewed in isolation.

Examination of the Effects of Valence Differences on Response Patterns

To assess the extent to which these valence differences might influence people’s responses to the BIF items, especially in an situation in which there is a plausible motvation to provide more positive responses under some conditions, we examined the data from Yan et al (2016, Experiment 3, 10.1093/jcr/ucw045). In this experiment, participants were provided with a description of a socially close or socially distant target and asked to complete the BIF. It is plausible that people would want to provide more positive responses for a socially close target, not for any reason related to construal level but for motivational reasons.

The authors of this experiment graciously provided the original data, which we used to fit models in which we predicted BIF responses using the social distance manipulation and the BIF valence differences.

As a first look, we fit models predicting BIF responses from the distance manipulation and tested whether adding random slopes for the items improved the fit of the model. If there is substantial variance in the random slopes, that would be an indication that there may extraneous influences (e.g., valence) on the BIF responses. However, a likelihood ratio test indicates that there is no significant improvement to the model offered by adding random slopes.

lrt_rs
## Data: yan_exp_3_long
## Models:
## model_soc: bif ~ mani_social + (1 | id) + (1 | item)
## model_rs: bif ~ mani_social + (1 | id) + (1 + mani_social | item)
##           npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## model_soc    4 6199.2 6225.1 -3095.6   6191.2                     
## model_rs     6 6200.8 6239.7 -3094.4   6188.8 2.3869  2     0.3032

Next, we can examine the effect of adding the valence difference for each item as a predictor in the model and also test if adding an interaction between valence and the distance manipulation improves the model.

We see below that a series of LRTs indicates that adding valence does not offer significant improvement to the model, nor does adding the interaction term.

lrt_val_sep
## Data: yan_exp_3_long
## Models:
## model_soc: bif ~ mani_social + (1 | id) + (1 | item)
## model_val_sep: bif ~ mani_social + d_sep_mc + (1 | id) + (1 | item)
## model_val_sep_int: bif ~ mani_social * d_sep_mc + (1 | id) + (1 | item)
##                   npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## model_soc            4 6199.2 6225.1 -3095.6   6191.2                     
## model_val_sep        5 6198.9 6231.3 -3094.5   6188.9 2.2583  1     0.1329
## model_val_sep_int    6 6200.3 6239.2 -3094.2   6188.3 0.6236  1     0.4297

It can nevertheless be informative to examine the detailed model output.

As can be seen below, if the valence differences (as measured by the separate judgments) had any influence on the responses to the BIF in this experiment, those differences were minimal. Moreover, controlling for the valence differences did not meaningfully change the estimate of the effect of social distance, suggesting that those effects were non-redundant.

summary(model_soc)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ mani_social + (1 | id) + (1 | item)
##    Data: yan_exp_3_long
## 
##      AIC      BIC   logLik deviance df.resid 
##   6199.2   6225.1  -3095.6   6191.2     4821 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6705 -1.0386  0.5679  0.7572  1.7042 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 0.3429   0.5856  
##  item   (Intercept) 0.1125   0.3355  
## Number of obs: 4825, groups:  id, 193; item, 25
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.46244    0.09806   4.716 2.41e-06 ***
## mani_social2  0.19131    0.10537   1.816   0.0694 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## mani_socil2 -0.493
summary(model_val_sep)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ mani_social + d_sep_mc + (1 | id) + (1 | item)
##    Data: yan_exp_3_long
## 
##      AIC      BIC   logLik deviance df.resid 
##   6198.9   6231.3  -3094.5   6188.9     4820 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6521 -1.0360  0.5676  0.7574  1.7126 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 0.3428   0.5855  
##  item   (Intercept) 0.1007   0.3173  
## Number of obs: 4825, groups:  id, 193; item, 25
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.46245    0.09561   4.837 1.32e-06 ***
## mani_social2  0.19130    0.10536   1.816   0.0694 .  
## d_sep_mc      0.21045    0.13681   1.538   0.1240    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) mn_sc2
## mani_socil2 -0.505       
## d_sep_mc     0.003  0.001
summary(model_val_sep_int)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ mani_social * d_sep_mc + (1 | id) + (1 | item)
##    Data: yan_exp_3_long
## 
##      AIC      BIC   logLik deviance df.resid 
##   6200.3   6239.2  -3094.2   6188.3     4819 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6455 -1.0384  0.5652  0.7569  1.6884 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 0.3428   0.5855  
##  item   (Intercept) 0.1008   0.3174  
## Number of obs: 4825, groups:  id, 193; item, 25
## 
## Fixed effects:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            0.46296    0.09563   4.841 1.29e-06 ***
## mani_social2           0.19017    0.10537   1.805   0.0711 .  
## d_sep_mc               0.25409    0.14760   1.721   0.0852 .  
## mani_social2:d_sep_mc -0.09648    0.12179  -0.792   0.4283    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) mn_sc2 d_sp_m
## mani_socil2 -0.506              
## d_sep_mc     0.006 -0.005       
## mn_scl2:d__ -0.007  0.012 -0.375

We can take a similar approach with the relative judgments. Below, we see that adding the valence differences measured with relative judgments offered significant improvement to the model, though the interaction between social distance and the valence differences was again nonsignificant.

lrt_val_rel
## Data: yan_exp_3_long
## Models:
## model_soc: bif ~ mani_social + (1 | id) + (1 | item)
## model_val_rel: bif ~ mani_social + d_rel_mc + (1 | id) + (1 | item)
## model_val_rel_int: bif ~ mani_social * d_rel_mc + (1 | id) + (1 | item)
##                   npar    AIC    BIC  logLik deviance   Chisq Df Pr(>Chisq)    
## model_soc            4 6199.2 6225.1 -3095.6   6191.2                          
## model_val_rel        5 6190.2 6222.6 -3090.1   6180.2 10.9507  1  0.0009357 ***
## model_val_rel_int    6 6190.6 6229.4 -3089.3   6178.6  1.6792  1  0.1950325    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can also examine the detailed model output. Here, we see that the valence difference measured with relative judgments are highly predictive of responses to the BIF items. However, controlling for this effect does not appear to alter the effect for social distance.

summary(model_val_rel)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ mani_social + d_rel_mc + (1 | id) + (1 | item)
##    Data: yan_exp_3_long
## 
##      AIC      BIC   logLik deviance df.resid 
##   6190.2   6222.6  -3090.1   6180.2     4820 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6811 -1.0354  0.5673  0.7618  1.7365 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 0.34258  0.5853  
##  item   (Intercept) 0.06404  0.2531  
## Number of obs: 4825, groups:  id, 193; item, 25
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    0.4625     0.0876   5.279  1.3e-07 ***
## mani_social2   0.1913     0.1053   1.816 0.069411 .  
## d_rel_mc       0.6099     0.1646   3.705 0.000212 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) mn_sc2
## mani_socil2 -0.552       
## d_rel_mc     0.008  0.003
summary(model_val_rel_int)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ mani_social * d_rel_mc + (1 | id) + (1 | item)
##    Data: yan_exp_3_long
## 
##      AIC      BIC   logLik deviance df.resid 
##   6190.6   6229.4  -3089.3   6178.6     4819 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7273 -1.0397  0.5643  0.7557  1.6700 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 0.34230  0.5851  
##  item   (Intercept) 0.06411  0.2532  
## Number of obs: 4825, groups:  id, 193; item, 25
## 
## Fixed effects:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            0.46402    0.08765   5.294 1.20e-07 ***
## mani_social2           0.18757    0.10535   1.780    0.075 .  
## d_rel_mc               0.71241    0.18285   3.896 9.77e-05 ***
## mani_social2:d_rel_mc -0.22520    0.17333  -1.299    0.194    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) mn_sc2 d_rl_m
## mani_socil2 -0.552              
## d_rel_mc     0.014 -0.010       
## mn_scl2:d__ -0.014  0.025 -0.434

In summary, it appears that in a situation in which it is plausible that people would be motivated to describe a person’s actions positively, the valence differences in the BIF item response options (when assessed through a relative judgment) is a strong predictor of BIF item responses. However, this effect appears to be non-redundant with potential effects of psychological distance, and importantly, there is no evidence from these data that these variables interact.