Construal Level International Multilab Replication (CLIMR) Project: Influence of Actual Distance on the Spatial Distance Effect
CLIMR Team 2024-12-05
Does the actual distance between the cities used in the spatial distance manipulation influence the effect of the manipulation on the BIF?
lrt_km_spatial
## Data: data_bif_spatial %>% filter(complete.cases(haversine))
## Models:
## glmm_spatial_km_base: bif ~ condition + (1 | lab:sub) + (1 | lab) + (1 | item)
## glmm_spatial_km_add: bif ~ condition + haversine_rescale + (1 | lab:sub) + (1 | lab) + (1 | item)
## glmm_spatial_km_int: bif ~ condition * haversine_rescale + (1 | lab:sub) + (1 | lab) + (1 | item)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## glmm_spatial_km_base 5 44984 45027 -22487 44974
## glmm_spatial_km_add 6 44984 45036 -22486 44972 1.7054 1 0.1916
## glmm_spatial_km_int 7 44986 45046 -22486 44972 0.3783 1 0.5385
summary(glmm_spatial_km_base)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
## Family: binomial ( logit )
## Formula: bif ~ condition + (1 | lab:sub) + (1 | lab) + (1 | item)
## Data: data_bif_spatial %>% filter(complete.cases(haversine))
##
## AIC BIC logLik deviance df.resid
## 44983.9 45026.7 -22486.9 44973.9 38437
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.9148 -0.8235 0.4210 0.6499 2.9666
##
## Random effects:
## Groups Name Variance Std.Dev.
## lab:sub (Intercept) 0.77348 0.8795
## lab (Intercept) 0.06563 0.2562
## item (Intercept) 0.46114 0.6791
## Number of obs: 38442, groups: lab:sub, 2958; lab, 77; item, 13
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.70143 0.19284 3.637 0.000275 ***
## conditiondistant 0.04446 0.04030 1.103 0.270005
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## condtndstnt -0.104
summary(glmm_spatial_km_add)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
## Family: binomial ( logit )
## Formula: bif ~ condition + haversine_rescale + (1 | lab:sub) + (1 | lab) + (1 | item)
## Data: data_bif_spatial %>% filter(complete.cases(haversine))
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 44984.2 45035.5 -22486.1 44972.2 38436
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.9128 -0.8230 0.4211 0.6498 2.9622
##
## Random effects:
## Groups Name Variance Std.Dev.
## lab:sub (Intercept) 0.77374 0.8796
## lab (Intercept) 0.06287 0.2507
## item (Intercept) 0.46109 0.6790
## Number of obs: 38442, groups: lab:sub, 2958; lab, 77; item, 13
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.702767 0.192794 3.645 0.000267 ***
## conditiondistant 0.044552 0.040310 1.105 0.269063
## haversine_rescale -0.003359 0.002548 -1.318 0.187409
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnd
## condtndstnt -0.104
## havrsn_rscl -0.005 -0.002
summary(glmm_spatial_km_int)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
## Family: binomial ( logit )
## Formula: bif ~ condition * haversine_rescale + (1 | lab:sub) + (1 | lab) + (1 | item)
## Data: data_bif_spatial %>% filter(complete.cases(haversine))
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 44985.8 45045.7 -22485.9 44971.8 38435
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.9110 -0.8230 0.4208 0.6496 2.9683
##
## Random effects:
## Groups Name Variance Std.Dev.
## lab:sub (Intercept) 0.77355 0.8795
## lab (Intercept) 0.06288 0.2508
## item (Intercept) 0.46111 0.6790
## Number of obs: 38442, groups: lab:sub, 2958; lab, 77; item, 13
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.702809 0.192681 3.648 0.000265 ***
## conditiondistant 0.044361 0.040305 1.101 0.271055
## haversine_rescale -0.004233 0.002915 -1.452 0.146503
## conditiondistant:haversine_rescale 0.001745 0.002827 0.617 0.537111
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnd hvrsn_
## condtndstnt -0.104
## havrsn_rscl -0.004 0.002
## cndtndstn:_ 0.000 -0.007 -0.486
Does the actual distance between the cities used in the spatial distance manipulation influence the strength of the spatial distance manipulation?
meta_spatial_mc_km
##
## Multivariate Meta-Analysis Model (k = 77; method: REML)
##
## Variance Components: none
##
## Test for Residual Heterogeneity:
## QE(df = 75) = 157.1653, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 17.6278, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 1.0007 0.0590 16.9737 <.0001 0.8852 1.1163 ***
## haversine 0.0001 0.0000 4.1985 <.0001 0.0001 0.0002 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
knitr::include_graphics("figures/climr_spatial-actual-distance-cause-size.png")