Skip to content

Latest commit

 

History

History
814 lines (759 loc) · 36.4 KB

CLIMR_exploration-panas_report.md

File metadata and controls

814 lines (759 loc) · 36.4 KB

Construal Level International Multilab Replication (CLIMR) Project: Analysis of Positive and Negative Affect (PANAS)

CLIMR Team 2025-01-07

Positive and Negative Affect (PANAS)

Liberman & Trope (1998, Study 1)

lrt_panas_temporal
## Data: data_bif_temporal %>% filter(complete.cases(panas_pos, panas_neg))
## Models:
## glmm_temporal_panas_base: bif ~ condition + (1 | lab:sub) + (1 | lab) + (1 | item)
## glmm_temporal_panas_add: bif ~ condition + panas_pos + panas_neg + (1 | lab:sub) + (1 | lab) + (1 | item)
## glmm_temporal_panas_int: bif ~ condition * panas_pos + condition * panas_neg + (1 | lab:sub) + (1 | lab) + (1 | item)
##                          npar   AIC   BIC logLik deviance    Chisq Df Pr(>Chisq)    
## glmm_temporal_panas_base    5 67863 67907 -33926    67853                           
## glmm_temporal_panas_add     7 67765 67828 -33876    67751 101.4456  2     <2e-16 ***
## glmm_temporal_panas_int     9 67769 67849 -33875    67751   0.2364  2     0.8885    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(glmm_temporal_panas_base)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ condition + (1 | lab:sub) + (1 | lab) + (1 | item)
##    Data: data_bif_temporal %>% filter(complete.cases(panas_pos, panas_neg))
## 
##      AIC      BIC   logLik deviance df.resid 
##  67862.6  67907.2 -33926.3  67852.6    54981 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4433 -0.7808 -0.2978  0.7886  4.8177 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  lab:sub (Intercept) 0.76711  0.8758  
##  lab     (Intercept) 0.08651  0.2941  
##  item    (Intercept) 0.44377  0.6662  
## Number of obs: 54986, groups:  lab:sub, 2894; lab, 78; item, 19
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)      -0.14176    0.15872  -0.893   0.3718  
## conditiondistant  0.08888    0.03786   2.348   0.0189 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## condtndstnt -0.119
summary(glmm_temporal_panas_add)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ condition + panas_pos + panas_neg + (1 | lab:sub) + (1 |      lab) + (1 | item)
##    Data: data_bif_temporal %>% filter(complete.cases(panas_pos, panas_neg))
## 
##      AIC      BIC   logLik deviance df.resid 
##  67765.2  67827.6 -33875.6  67751.2    54979 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5913 -0.7812 -0.2985  0.7891  4.7598 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  lab:sub (Intercept) 0.73449  0.857   
##  lab     (Intercept) 0.06866  0.262   
##  item    (Intercept) 0.44357  0.666   
## Number of obs: 54986, groups:  lab:sub, 2894; lab, 78; item, 19
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -0.13811    0.15810  -0.874   0.3824    
## conditiondistant  0.08368    0.03726   2.246   0.0247 *  
## panas_pos         0.25727    0.02582   9.963   <2e-16 ***
## panas_neg         0.01346    0.02636   0.511   0.6097    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnd pns_ps
## condtndstnt -0.118              
## panas_pos    0.001 -0.012       
## panas_neg    0.002 -0.005 -0.141
summary(glmm_temporal_panas_int)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ condition * panas_pos + condition * panas_neg + (1 | lab:sub) +      (1 | lab) + (1 | item)
##    Data: data_bif_temporal %>% filter(complete.cases(panas_pos, panas_neg))
## 
##      AIC      BIC   logLik deviance df.resid 
##  67768.9  67849.2 -33875.5  67750.9    54977 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5965 -0.7813 -0.2986  0.7891  4.7663 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  lab:sub (Intercept) 0.73444  0.8570  
##  lab     (Intercept) 0.06862  0.2619  
##  item    (Intercept) 0.44359  0.6660  
## Number of obs: 54986, groups:  lab:sub, 2894; lab, 78; item, 19
## 
## Fixed effects:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                -0.13820    0.15801  -0.875   0.3818    
## conditiondistant            0.08370    0.03726   2.246   0.0247 *  
## panas_pos                   0.24802    0.03619   6.853 7.24e-12 ***
## panas_neg                   0.02368    0.03735   0.634   0.5261    
## conditiondistant:panas_pos  0.01794    0.05029   0.357   0.7213    
## conditiondistant:panas_neg -0.01963    0.05165  -0.380   0.7039    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                  (Intr) cndtnd pns_ps pns_ng cndtndstnt:pns_p
## condtndstnt      -0.118                                      
## panas_pos         0.002 -0.009                               
## panas_neg         0.001 -0.003 -0.166                        
## cndtndstnt:pns_p -0.001  0.000 -0.700  0.118                 
## cndtndstnt:pns_n  0.001  0.000  0.119 -0.708 -0.146
lrt_panas_val_temporal
## Data: data_bif_temporal %>% filter(complete.cases(panas_pos, panas_neg))
## Models:
## glmm_temporal_panas_add: bif ~ condition + panas_pos + panas_neg + (1 | lab:sub) + (1 | lab) + (1 | item)
## glmm_temporal_panas_val: bif ~ condition + panas_pos * d + panas_neg + (1 | lab:sub) + (1 | lab) + (1 | item)
##                         npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)    
## glmm_temporal_panas_add    7 67765 67828 -33876    67751                         
## glmm_temporal_panas_val    9 67752 67833 -33867    67734 16.813  2  0.0002234 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(glmm_temporal_panas_val)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ condition + panas_pos * d + panas_neg + (1 | lab:sub) +      (1 | lab) + (1 | item)
##    Data: data_bif_temporal %>% filter(complete.cases(panas_pos, panas_neg))
## 
##      AIC      BIC   logLik deviance df.resid 
##  67752.4  67832.6 -33867.2  67734.4    54977 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5910 -0.7815 -0.2984  0.7889  4.7683 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  lab:sub (Intercept) 0.73451  0.8570  
##  lab     (Intercept) 0.06858  0.2619  
##  item    (Intercept) 0.18226  0.4269  
## Number of obs: 54986, groups:  lab:sub, 2894; lab, 78; item, 19
## 
## Fixed effects:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -1.255605   0.240513  -5.221 1.78e-07 ***
## conditiondistant  0.083687   0.037263   2.246   0.0247 *  
## panas_pos         0.252740   0.039472   6.403 1.52e-10 ***
## d                 1.310195   0.252891   5.181 2.21e-07 ***
## panas_neg         0.013451   0.026357   0.510   0.6098    
## panas_pos:d       0.005199   0.034239   0.152   0.8793    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnd pns_ps d      pns_ng
## condtndstnt -0.078                            
## panas_pos   -0.003 -0.008                     
## d           -0.898  0.001  0.003              
## panas_neg    0.002 -0.005 -0.090  0.000       
## panas_pos:d  0.004  0.001 -0.756 -0.003 -0.002

Fujita et al. (2006, Study 1)

lrt_panas_spatial
## Data: data_bif_spatial %>% filter(complete.cases(panas_pos, panas_neg))
## Models:
## glmm_spatial_panas_base: bif ~ condition + (1 | lab:sub) + (1 | lab) + (1 | item)
## glmm_spatial_panas_add: bif ~ condition + panas_pos + panas_neg + (1 | lab:sub) + (1 | lab) + (1 | item)
## glmm_spatial_panas_int: bif ~ condition * panas_pos + condition * panas_neg + (1 | lab:sub) + (1 | lab) + (1 | item)
##                         npar   AIC   BIC logLik deviance   Chisq Df Pr(>Chisq)    
## glmm_spatial_panas_base    5 44807 44849 -22398    44797                          
## glmm_spatial_panas_add     7 44739 44799 -22363    44725 71.6834  2  2.717e-16 ***
## glmm_spatial_panas_int     9 44743 44820 -22362    44725  0.4081  2     0.8154    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(glmm_spatial_panas_base)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ condition + (1 | lab:sub) + (1 | lab) + (1 | item)
##    Data: data_bif_spatial %>% filter(complete.cases(panas_pos, panas_neg))
## 
##      AIC      BIC   logLik deviance df.resid 
##  44806.7  44849.4 -22398.3  44796.7    38305 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9592 -0.8228  0.4204  0.6501  2.9781 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  lab:sub (Intercept) 0.7709   0.8780  
##  lab     (Intercept) 0.0683   0.2613  
##  item    (Intercept) 0.4641   0.6813  
## Number of obs: 38310, groups:  lab:sub, 2947; lab, 78; item, 13
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       0.70168    0.19350   3.626 0.000287 ***
## conditiondistant  0.04563    0.04033   1.131 0.257912    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## condtndstnt -0.104
summary(glmm_spatial_panas_add)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ condition + panas_pos + panas_neg + (1 | lab:sub) + (1 |      lab) + (1 | item)
##    Data: data_bif_spatial %>% filter(complete.cases(panas_pos, panas_neg))
## 
##      AIC      BIC   logLik deviance df.resid 
##  44739.0  44798.9 -22362.5  44725.0    38303 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0274 -0.8185  0.4210  0.6501  2.9922 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  lab:sub (Intercept) 0.7436   0.8623  
##  lab     (Intercept) 0.0642   0.2534  
##  item    (Intercept) 0.4641   0.6813  
## Number of obs: 38310, groups:  lab:sub, 2947; lab, 78; item, 13
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       0.69498    0.19331   3.595 0.000324 ***
## conditiondistant  0.05545    0.03989   1.390 0.164512    
## panas_pos         0.23032    0.02709   8.502  < 2e-16 ***
## panas_neg        -0.02647    0.02992  -0.885 0.376265    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnd pns_ps
## condtndstnt -0.103              
## panas_pos   -0.002  0.030       
## panas_neg    0.004 -0.016 -0.177
summary(glmm_spatial_panas_int)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ condition * panas_pos + condition * panas_neg + (1 | lab:sub) +      (1 | lab) + (1 | item)
##    Data: data_bif_spatial %>% filter(complete.cases(panas_pos, panas_neg))
## 
##      AIC      BIC   logLik deviance df.resid 
##  44742.6  44819.6 -22362.3  44724.6    38301 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0312 -0.8187  0.4207  0.6505  3.0012 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  lab:sub (Intercept) 0.74343  0.8622  
##  lab     (Intercept) 0.06412  0.2532  
##  item    (Intercept) 0.46413  0.6813  
## Number of obs: 38310, groups:  lab:sub, 2947; lab, 78; item, 13
## 
## Fixed effects:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                 0.69490    0.19327   3.596 0.000324 ***
## conditiondistant            0.05568    0.03989   1.396 0.162779    
## panas_pos                   0.22336    0.03719   6.007  1.9e-09 ***
## panas_neg                  -0.04115    0.04144  -0.993 0.320780    
## conditiondistant:panas_pos  0.01516    0.05327   0.285 0.775946    
## conditiondistant:panas_neg  0.03012    0.05862   0.514 0.607380    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                  (Intr) cndtnd pns_ps pns_ng cndtndstnt:pns_p
## condtndstnt      -0.103                                      
## panas_pos        -0.002  0.011                               
## panas_neg         0.003 -0.010 -0.191                        
## cndtndstnt:pns_p  0.001  0.017 -0.685  0.129                 
## cndtndstnt:pns_n -0.001 -0.002  0.137 -0.692 -0.180
lrt_panas_val_spatial
## Data: data_bif_spatial %>% filter(complete.cases(panas_pos, panas_neg))
## Models:
## glmm_spatial_panas_add: bif ~ condition + panas_pos + panas_neg + (1 | lab:sub) + (1 | lab) + (1 | item)
## glmm_spatial_panas_val: bif ~ condition + panas_pos * d + panas_neg + (1 | lab:sub) + (1 | lab) + (1 | item)
##                        npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)    
## glmm_spatial_panas_add    7 44739 44799 -22363    44725                         
## glmm_spatial_panas_val    9 44726 44802 -22354    44708 17.477  2  0.0001603 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(glmm_spatial_panas_val)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ condition + panas_pos * d + panas_neg + (1 | lab:sub) +      (1 | lab) + (1 | item)
##    Data: data_bif_spatial %>% filter(complete.cases(panas_pos, panas_neg))
## 
##      AIC      BIC   logLik deviance df.resid 
##  44725.5  44802.5 -22353.8  44707.5    38301 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0433 -0.8196  0.4198  0.6517  2.9699 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  lab:sub (Intercept) 0.74417  0.8627  
##  lab     (Intercept) 0.06424  0.2535  
##  item    (Intercept) 0.22814  0.4776  
## Number of obs: 38310, groups:  lab:sub, 2947; lab, 78; item, 13
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -0.62615    0.38519  -1.626 0.104039    
## conditiondistant  0.05536    0.03990   1.387 0.165318    
## panas_pos         0.11186    0.04898   2.284 0.022373 *  
## d                 1.42814    0.38847   3.676 0.000237 ***
## panas_neg        -0.02661    0.02993  -0.889 0.373952    
## panas_pos:d       0.13406    0.04605   2.911 0.003598 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnd pns_ps d      pns_ng
## condtndstnt -0.052                            
## panas_pos    0.001  0.017                     
## d           -0.933  0.000 -0.003              
## panas_neg    0.002 -0.016 -0.097  0.000       
## panas_pos:d -0.004 -0.001 -0.833  0.005 -0.002

Social Distance (Paradigmatic Replication)

lrt_panas_social
## Data: data_bif_social %>% filter(complete.cases(panas_pos, panas_neg))
## Models:
## glmm_social_panas_base: bif ~ condition + (1 | lab:sub) + (1 | lab) + (1 | item)
## glmm_social_panas_add: bif ~ condition + panas_pos + panas_neg + (1 | lab:sub) + (1 | lab) + (1 | item)
## glmm_social_panas_int: bif ~ condition * panas_pos + condition * panas_neg + (1 | lab:sub) + (1 | lab) + (1 | item)
##                        npar   AIC   BIC logLik deviance   Chisq Df Pr(>Chisq)    
## glmm_social_panas_base    5 88050 88096 -44020    88040                          
## glmm_social_panas_add     7 87991 88055 -43988    87977 63.2773  2  1.818e-14 ***
## glmm_social_panas_int     9 87987 88069 -43984    87969  8.1441  2    0.01704 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(glmm_social_panas_base)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ condition + (1 | lab:sub) + (1 | lab) + (1 | item)
##    Data: data_bif_social %>% filter(complete.cases(panas_pos, panas_neg))
## 
##      AIC      BIC   logLik deviance df.resid 
##  88050.1  88096.1 -44020.1  88040.1    72395 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1800 -0.7248 -0.4335  0.8742  5.3226 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  lab:sub (Intercept) 0.85462  0.9245  
##  lab     (Intercept) 0.04701  0.2168  
##  item    (Intercept) 0.21245  0.4609  
## Number of obs: 72400, groups:  lab:sub, 2897; lab, 78; item, 25
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -0.38044    0.09948  -3.824 0.000131 ***
## conditiondistant -0.27694    0.03841  -7.209 5.62e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## condtndstnt -0.192
summary(glmm_social_panas_add)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ condition + panas_pos + panas_neg + (1 | lab:sub) + (1 |      lab) + (1 | item)
##    Data: data_bif_social %>% filter(complete.cases(panas_pos, panas_neg))
## 
##      AIC      BIC   logLik deviance df.resid 
##  87990.9  88055.2 -43988.4  87976.9    72393 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2211 -0.7243 -0.4329  0.8731  5.0535 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  lab:sub (Intercept) 0.83164  0.9119  
##  lab     (Intercept) 0.04198  0.2049  
##  item    (Intercept) 0.21240  0.4609  
## Number of obs: 72400, groups:  lab:sub, 2897; lab, 78; item, 25
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -0.38574    0.09908  -3.893 9.90e-05 ***
## conditiondistant -0.26693    0.03804  -7.017 2.27e-12 ***
## panas_pos         0.18300    0.02509   7.294 3.01e-13 ***
## panas_neg         0.06879    0.02822   2.438   0.0148 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnd pns_ps
## condtndstnt -0.191              
## panas_pos   -0.012  0.045       
## panas_neg    0.009 -0.029 -0.115
summary(glmm_social_panas_int)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ condition * panas_pos + condition * panas_neg + (1 | lab:sub) +      (1 | lab) + (1 | item)
##    Data: data_bif_social %>% filter(complete.cases(panas_pos, panas_neg))
## 
##      AIC      BIC   logLik deviance df.resid 
##  87986.7  88069.4 -43984.4  87968.7    72391 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2599 -0.7239 -0.4333  0.8730  5.1169 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  lab:sub (Intercept) 0.82843  0.9102  
##  lab     (Intercept) 0.04224  0.2055  
##  item    (Intercept) 0.21239  0.4609  
## Number of obs: 72400, groups:  lab:sub, 2897; lab, 78; item, 25
## 
## Fixed effects:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                -0.38838    0.09904  -3.921 8.81e-05 ***
## conditiondistant           -0.26639    0.03798  -7.013 2.33e-12 ***
## panas_pos                   0.25310    0.03518   7.195 6.25e-13 ***
## panas_neg                   0.04882    0.03973   1.229  0.21909    
## conditiondistant:panas_pos -0.13988    0.04930  -2.837  0.00455 ** 
## conditiondistant:panas_neg  0.03763    0.05530   0.680  0.49621    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                  (Intr) cndtnd pns_ps pns_ng cndtndstnt:pns_p
## condtndstnt      -0.191                                      
## panas_pos        -0.015  0.035                               
## panas_neg         0.012 -0.018 -0.126                        
## cndtndstnt:pns_p  0.009 -0.005 -0.702  0.087                 
## cndtndstnt:pns_n -0.008 -0.003  0.088 -0.705 -0.113
lrt_panas_val_social
## Data: data_bif_social %>% filter(complete.cases(panas_pos, panas_neg))
## Models:
## glmm_social_panas_int: bif ~ condition * panas_pos + condition * panas_neg + (1 | lab:sub) + (1 | lab) + (1 | item)
## glmm_social_panas_val_int: bif ~ condition * panas_pos + condition * panas_neg + condition * d + (1 | lab:sub) + (1 | lab) + (1 | item)
## glmm_social_panas_val_int_3: bif ~ condition * panas_pos + condition * panas_neg + condition * d * panas_pos + (1 | lab:sub) + (1 | lab) + (1 | item)
##                             npar   AIC   BIC logLik deviance   Chisq Df Pr(>Chisq)    
## glmm_social_panas_int          9 87987 88069 -43984    87969                          
## glmm_social_panas_val_int     11 87925 88026 -43951    87903 66.0158  2  4.622e-15 ***
## glmm_social_panas_val_int_3   13 87921 88041 -43948    87895  7.3117  2    0.02584 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(glmm_social_panas_val_int)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ condition * panas_pos + condition * panas_neg + condition *      d + (1 | lab:sub) + (1 | lab) + (1 | item)
##    Data: data_bif_social %>% filter(complete.cases(panas_pos, panas_neg))
## 
##      AIC      BIC   logLik deviance df.resid 
##  87924.7  88025.8 -43951.4  87902.7    72389 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3111 -0.7221 -0.4334  0.8706  4.7344 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  lab:sub (Intercept) 0.83090  0.9115  
##  lab     (Intercept) 0.04229  0.2056  
##  item    (Intercept) 0.11020  0.3320  
## Number of obs: 72400, groups:  lab:sub, 2897; lab, 78; item, 25
## 
## Fixed effects:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                -1.25707    0.17093  -7.354 1.92e-13 ***
## conditiondistant            0.02262    0.05564   0.407  0.68436    
## panas_pos                   0.25492    0.03525   7.232 4.75e-13 ***
## panas_neg                   0.04918    0.03980   1.236  0.21651    
## d                           1.05415    0.18665   5.648 1.63e-08 ***
## conditiondistant:panas_pos -0.14241    0.04938  -2.884  0.00392 ** 
## conditiondistant:panas_neg  0.03687    0.05537   0.666  0.50540    
## conditiondistant:d         -0.34199    0.04816  -7.102 1.23e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                  (Intr) cndtnd pns_ps pns_ng d      cndtndstnt:pns_p cndtndstnt:pns_n
## condtndstnt      -0.163                                                              
## panas_pos        -0.011  0.030                                                       
## panas_neg         0.006 -0.012 -0.126                                                
## d                -0.897  0.094  0.002  0.001                                         
## cndtndstnt:pns_p  0.007 -0.008 -0.702  0.088 -0.002                                  
## cndtndstnt:pns_n -0.004 -0.003  0.089 -0.705 -0.001 -0.113                           
## cndtndstnt:       0.119 -0.730 -0.008 -0.001 -0.129  0.007            0.002
summary(glmm_social_panas_val_int_3)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ condition * panas_pos + condition * panas_neg + condition *      d * panas_pos + (1 | lab:sub) + (1 | lab) + (1 | item)
##    Data: data_bif_social %>% filter(complete.cases(panas_pos, panas_neg))
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##  87921.4  88040.9 -43947.7  87895.4    72387 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3100 -0.7219 -0.4328  0.8706  4.5760 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  lab:sub (Intercept) 0.8309   0.9115  
##  lab     (Intercept) 0.0423   0.2057  
##  item    (Intercept) 0.1103   0.3322  
## Number of obs: 72400, groups:  lab:sub, 2897; lab, 78; item, 25
## 
## Fixed effects:
##                              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                  -1.25753    0.17078  -7.363 1.80e-13 ***
## conditiondistant              0.02345    0.05568   0.421    0.674    
## panas_pos                     0.25727    0.05100   5.045 4.54e-07 ***
## panas_neg                     0.04922    0.03979   1.237    0.216    
## d                             1.05465    0.18648   5.655 1.55e-08 ***
## conditiondistant:panas_pos   -0.04456    0.07171  -0.621    0.534    
## conditiondistant:panas_neg    0.03692    0.05534   0.667    0.505    
## conditiondistant:d           -0.34345    0.04820  -7.125 1.04e-12 ***
## panas_pos:d                  -0.00282    0.04389  -0.064    0.949    
## conditiondistant:panas_pos:d -0.11576    0.06179  -1.873    0.061 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                  (Intr) cndtnd pns_ps pns_ng d      cndtndstnt:pns_p cndtndstnt:pns_n cndtn: pns_p:
## condtndstnt      -0.163                                                                            
## panas_pos        -0.017  0.051                                                                     
## panas_neg         0.006 -0.011 -0.086                                                              
## d                -0.896  0.094  0.011  0.001                                                       
## cndtndstnt:pns_p  0.011 -0.028 -0.705  0.060 -0.007                                                
## cndtndstnt:pns_n -0.004 -0.003  0.061 -0.705 -0.001 -0.077                                         
## cndtndstnt:       0.119 -0.730 -0.042 -0.002 -0.129  0.028            0.002                        
## panas_pos:d       0.014 -0.042 -0.723 -0.001 -0.013  0.513            0.000            0.050       
## cndtndst:_:      -0.009  0.029  0.513  0.001  0.009 -0.725           -0.001           -0.031 -0.709

Likelihood Distance (Paradigmatic Replication)

lrt_panas_likelihood
## Data: data_bif_likelihood %>% filter(complete.cases(panas_pos, panas_neg))
## Models:
## glmm_likelihood_panas_base: bif ~ condition + (1 | lab:sub) + (1 | lab) + (1 | item)
## glmm_likelihood_panas_add: bif ~ condition + panas_pos + panas_neg + (1 | lab:sub) + (1 | lab) + (1 | item)
## glmm_likelihood_panas_int: bif ~ condition * panas_pos + condition * panas_neg + (1 | lab:sub) + (1 | lab) + (1 | item)
##                            npar   AIC   BIC logLik deviance   Chisq Df Pr(>Chisq)    
## glmm_likelihood_panas_base    5 32343 32384 -16167    32333                          
## glmm_likelihood_panas_add     7 32303 32361 -16145    32289 44.0495  2  2.721e-10 ***
## glmm_likelihood_panas_int     9 32304 32377 -16143    32286  3.4577  2     0.1775    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(glmm_likelihood_panas_base)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ condition + (1 | lab:sub) + (1 | lab) + (1 | item)
##    Data: data_bif_likelihood %>% filter(complete.cases(panas_pos, panas_neg))
## 
##      AIC      BIC   logLik deviance df.resid 
##  32343.4  32384.3 -16166.7  32333.4    26023 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8194 -0.8001  0.3319  0.7643  3.0335 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  lab:sub (Intercept) 0.66774  0.8172  
##  lab     (Intercept) 0.03879  0.1969  
##  item    (Intercept) 0.62155  0.7884  
## Number of obs: 26028, groups:  lab:sub, 2892; lab, 77; item, 9
## 
## Fixed effects:
##                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)      -0.008137   0.265424  -0.031    0.976
## conditiondistant  0.055499   0.041272   1.345    0.179
## 
## Correlation of Fixed Effects:
##             (Intr)
## condtndstnt -0.077
summary(glmm_likelihood_panas_add)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ condition + panas_pos + panas_neg + (1 | lab:sub) + (1 |      lab) + (1 | item)
##    Data: data_bif_likelihood %>% filter(complete.cases(panas_pos, panas_neg))
## 
##      AIC      BIC   logLik deviance df.resid 
##  32303.4  32360.5 -16144.7  32289.4    26021 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9011 -0.7951  0.3337  0.7658  3.1545 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  lab:sub (Intercept) 0.6521   0.8075  
##  lab     (Intercept) 0.0313   0.1769  
##  item    (Intercept) 0.6215   0.7883  
## Number of obs: 26028, groups:  lab:sub, 2892; lab, 77; item, 9
## 
## Fixed effects:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -0.006934   0.265247  -0.026    0.979    
## conditiondistant  0.053377   0.041011   1.302    0.193    
## panas_pos         0.171062   0.027054   6.323 2.57e-10 ***
## panas_neg         0.038228   0.031082   1.230    0.219    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnd pns_ps
## condtndstnt -0.077              
## panas_pos    0.000 -0.004       
## panas_neg    0.003 -0.008 -0.141
summary(glmm_likelihood_panas_int)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ condition * panas_pos + condition * panas_neg + (1 | lab:sub) +      (1 | lab) + (1 | item)
##    Data: data_bif_likelihood %>% filter(complete.cases(panas_pos, panas_neg))
## 
##      AIC      BIC   logLik deviance df.resid 
##  32303.9  32377.4 -16143.0  32285.9    26019 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9156 -0.7940  0.3336  0.7660  3.1728 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  lab:sub (Intercept) 0.6507   0.8066  
##  lab     (Intercept) 0.0314   0.1772  
##  item    (Intercept) 0.6214   0.7883  
## Number of obs: 26028, groups:  lab:sub, 2892; lab, 77; item, 9
## 
## Fixed effects:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                -0.006271   0.265237  -0.024   0.9811    
## conditiondistant            0.053202   0.040988   1.298   0.1943    
## panas_pos                   0.167954   0.037616   4.465 8.01e-06 ***
## panas_neg                   0.094843   0.043463   2.182   0.0291 *  
## conditiondistant:panas_pos  0.007423   0.052931   0.140   0.8885    
## conditiondistant:panas_neg -0.113651   0.061046  -1.862   0.0626 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                  (Intr) cndtnd pns_ps pns_ng cndtndstnt:pns_p
## condtndstnt      -0.077                                      
## panas_pos         0.000 -0.004                               
## panas_neg         0.003 -0.007 -0.125                        
## cndtndstnt:pns_p  0.000  0.001 -0.695  0.085                 
## cndtndstnt:pns_n -0.001  0.002  0.088 -0.699 -0.139
lrt_panas_val_likelihood
## Data: data_bif_likelihood %>% filter(complete.cases(panas_pos, panas_neg))
## Models:
## glmm_likelihood_panas_add: bif ~ condition + panas_pos + panas_neg + (1 | lab:sub) + (1 | lab) + (1 | item)
## glmm_likelihood_panas_val: bif ~ condition + panas_pos * d + panas_neg + (1 | lab:sub) + (1 | lab) + (1 | item)
##                           npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)    
## glmm_likelihood_panas_add    7 32303 32361 -16145    32289                         
## glmm_likelihood_panas_val    9 32292 32366 -16137    32274 15.099  2  0.0005263 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(glmm_likelihood_panas_val)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: bif ~ condition + panas_pos * d + panas_neg + (1 | lab:sub) +      (1 | lab) + (1 | item)
##    Data: data_bif_likelihood %>% filter(complete.cases(panas_pos, panas_neg))
## 
##      AIC      BIC   logLik deviance df.resid 
##  32292.3  32365.8 -16137.1  32274.3    26019 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8686 -0.7964  0.3357  0.7645  3.2166 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  lab:sub (Intercept) 0.65235  0.8077  
##  lab     (Intercept) 0.03122  0.1767  
##  item    (Intercept) 0.12607  0.3551  
## Number of obs: 26028, groups:  lab:sub, 2892; lab, 77; item, 9
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -1.23633    0.24234  -5.102 3.37e-07 ***
## conditiondistant  0.05340    0.04102   1.302    0.193    
## panas_pos         0.20195    0.04286   4.712 2.46e-06 ***
## d                 1.62753    0.27589   5.899 3.65e-09 ***
## panas_neg         0.03828    0.03108   1.232    0.218    
## panas_pos:d      -0.04018    0.04329  -0.928    0.353    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnd pns_ps d      pns_ng
## condtndstnt -0.085                            
## panas_pos   -0.006 -0.002                     
## d           -0.860  0.001  0.004              
## panas_neg    0.003 -0.008 -0.088  0.001       
## panas_pos:d  0.005 -0.001 -0.776 -0.003 -0.002