Construal Level International Multilab Replication (CLIMR) Project: Analysis of BIF Response Option Valence Differences in Past Data – Sánchez et al (2021)
CLIMR Team 2024-11-28
Given that we unexpectedly found a significant interaction between the distance manipulation and BIF response option valence differences for the temporal distance replication, it may be worthwhile to examine whether there is evidence for the influence of this confound in previous data.
To explore this possibility, we fit a series of mixed effects logistic regression models on the BIF item responses in the data of Sánchez et al (2021) in which we examine a potential interaction between the temporal distance manipulation in this study and valence differences in the item response options.
lrt_val_sanchez
## Data: sanchez_long
## Models:
## glmm_sanchez_bif_base: bif ~ condition + (1 | ID) + (1 | item)
## glmm_sanchez_bif_val: bif ~ condition + d + (1 | ID) + (1 | item)
## glmm_sanchez_bif_int: bif ~ condition * d + (1 | ID) + (1 | item)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## glmm_sanchez_bif_base 4 15195 15224 -7593.5 15187
## glmm_sanchez_bif_val 5 15177 15214 -7583.4 15167 20.1102 1 7.311e-06 ***
## glmm_sanchez_bif_int 6 15175 15219 -7581.3 15163 4.1917 1 0.04062 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
A likelihood ratio test indicates that adding the valence differences and the interaction term significantly improves the model.
summary(glmm_sanchez_bif_int)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
## Family: binomial ( logit )
## Formula: bif ~ condition * d + (1 | ID) + (1 | item)
## Data: sanchez_long
##
## AIC BIC logLik deviance df.resid
## 15174.6 15219.0 -7581.3 15162.6 12119
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.6454 -0.8406 0.3882 0.7966 3.4799
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 0.6315 0.7947
## item (Intercept) 0.1821 0.4267
## Number of obs: 12125, groups: ID, 484; item, 25
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.99400 0.22966 -4.328 1.50e-05 ***
## condition2 0.06001 0.12609 0.476 0.6341
## d 1.23352 0.24971 4.940 7.82e-07 ***
## condition2:d 0.23907 0.11609 2.059 0.0395 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtn2 d
## condition2 -0.273
## d -0.893 0.173
## conditin2:d 0.204 -0.754 -0.226
Although Sánchez et al (2021) reported a significant effect for temporal distance on the BIF, accounting for the interaction with the valence difference confound, this effect becomes near-zero and nonsignificant. The interaction is such that as the valence difference increases, the effect of the distance manipulation increases in magnitude. Converting from the log odds scale to d, the effect for the distance manipulation when the valence difference is zero is d = 0.03, 95% CI [-0.10, 0.17].
This interaction is in a direction opposite to what was observed in the CLIMR replication of the temporal distance effect.
summary(glmm_sanchez_bif_base)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
## Family: binomial ( logit )
## Formula: bif ~ condition + (1 | ID) + (1 | item)
## Data: sanchez_long
##
## AIC BIC logLik deviance df.resid
## 15194.9 15224.5 -7593.5 15186.9 12121
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.7536 -0.8381 0.3881 0.7894 3.3665
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 0.6303 0.7939
## item (Intercept) 0.4212 0.6490
## Number of obs: 12125, groups: ID, 484; item, 25
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.01765 0.14239 0.124 0.90135
## condition2 0.25595 0.08273 3.094 0.00198 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## condition2 -0.291
summary(glmm_sanchez_bif_val)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
## Family: binomial ( logit )
## Formula: bif ~ condition + d + (1 | ID) + (1 | item)
## Data: sanchez_long
##
## AIC BIC logLik deviance df.resid
## 15176.8 15213.8 -7583.4 15166.8 12120
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8053 -0.8389 0.3890 0.7893 3.4018
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 0.6302 0.7939
## item (Intercept) 0.1822 0.4269
## Number of obs: 12125, groups: ID, 484; item, 25
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.09166 0.22499 -4.852 1.22e-06 ***
## condition2 0.25597 0.08272 3.094 0.00197 **
## d 1.35146 0.24337 5.553 2.80e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtn2
## condition2 -0.187
## d -0.888 0.003
We can also examine data from Grinfeld et al (2024, Study 2C) to see if a similar interaction occurs.
lrt_val_grinfeld
## Data: grinfeld_2c_long
## Models:
## glmm_grinfeld_bif_base: bif ~ condition + (1 | workerId) + (1 | item)
## glmm_grinfeld_bif_val: bif ~ condition + d + (1 | workerId) + (1 | item)
## glmm_grinfeld_bif_int: bif ~ condition * d + (1 | workerId) + (1 | item)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## glmm_grinfeld_bif_base 4 2200.3 2223.7 -1096.2 2192.3
## glmm_grinfeld_bif_val 5 2179.8 2208.9 -1084.9 2169.8 22.6024 1 1.992e-06 ***
## glmm_grinfeld_bif_int 6 2181.1 2216.0 -1084.5 2169.1 0.6797 1 0.4097
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
A likelihood ratio test indicates significant model improvement when adding valence differences as a predictor but not the interaction term.
summary(glmm_grinfeld_bif_val)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
## Family: binomial ( logit )
## Formula: bif ~ condition + d + (1 | workerId) + (1 | item)
## Data: grinfeld_2c_long
##
## AIC BIC logLik deviance df.resid
## 2179.8 2208.9 -1084.9 2169.8 2495
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -7.9627 -0.4106 0.1254 0.4380 5.8134
##
## Random effects:
## Groups Name Variance Std.Dev.
## workerId (Intercept) 6.4985 2.5492
## item (Intercept) 0.1494 0.3866
## Number of obs: 2500, groups: workerId, 100; item, 25
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.4711 0.4431 -3.320 0.000901 ***
## conditionhypothetical 1.7253 0.5341 3.230 0.001237 **
## d 1.6295 0.2695 6.047 1.48e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnh
## cndtnhyptht -0.606
## d -0.500 0.018
Controlling for valence differences, the effect of hypotheticality holds in this dataset, though there is also evidence that people prefer the abstract option more when it is positive.
summary(glmm_grinfeld_bif_base)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
## Family: binomial ( logit )
## Formula: bif ~ condition + (1 | workerId) + (1 | item)
## Data: grinfeld_2c_long
##
## AIC BIC logLik deviance df.resid
## 2200.4 2223.7 -1096.2 2192.4 2496
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -7.4891 -0.4025 0.1193 0.4387 5.4404
##
## Random effects:
## Groups Name Variance Std.Dev.
## workerId (Intercept) 6.5096 2.551
## item (Intercept) 0.5055 0.711
## Number of obs: 2500, groups: workerId, 100; item, 25
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.1346 0.4020 -0.335 0.73769
## conditionhypothetical 1.7260 0.5344 3.230 0.00124 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## cndtnhyptht -0.658
summary(glmm_grinfeld_bif_int)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
## Family: binomial ( logit )
## Formula: bif ~ condition * d + (1 | workerId) + (1 | item)
## Data: grinfeld_2c_long
##
## AIC BIC logLik deviance df.resid
## 2181.1 2216.0 -1084.5 2169.1 2494
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -8.4022 -0.4087 0.1227 0.4319 5.5992
##
## Random effects:
## Groups Name Variance Std.Dev.
## workerId (Intercept) 6.491 2.548
## item (Intercept) 0.149 0.386
## Number of obs: 2500, groups: workerId, 100; item, 25
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.3578 0.4619 -2.940 0.00329 **
## conditionhypothetical 1.5073 0.5922 2.545 0.01092 *
## d 1.4925 0.3129 4.770 1.84e-06 ***
## conditionhypothetical:d 0.2758 0.3254 0.847 0.39676
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnh d
## cndtnhyptht -0.647
## d -0.558 0.236
## cndtnhypth: 0.285 -0.433 -0.510