Skip to content

Latest commit

 

History

History
257 lines (222 loc) · 8.92 KB

CLIMR_validation-3_report.md

File metadata and controls

257 lines (222 loc) · 8.92 KB

Construal Level International Multilab Replication (CLIMR) Project: Linguistic Concreteness Validation

CLIMR Team 2024-06-04

These validations are documented here: https://osf.io/kgrs9/

Previous relevant analyses by the Puddle-Ducks can be found here: https://www.rabbitsnore.com/2019/02/there-might-be-problems-with-automated.html

Linguistic Measures of Concreteness/Abstraction

Standarized mean differences

d_folk
##                  ID        d         var  ci_lower ci_upper
## 1 Folk Concreteness 1.001557 0.001493545 0.9257806 1.077333
d_lcm
##    ID           d         var   ci_lower    ci_upper
## 1 LCM -0.06532858 0.001328546 -0.1367964 0.006139257
d_lcm_pd
##               ID         d         var  ci_lower  ci_upper
## 1 LCM (Modified) 0.2374944 0.001337186 0.1657946 0.3091943
knitr::include_graphics("./figures/climr_linguistic-measure-swarm_figure.png")

Linear mixed effects models

summary(lmer_folk)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: concreteness ~ 1 + distance + (1 | ResponseId) + (1 + distance |      item)
##    Data: linguistic_long
## Control: lmerControl(optimizer = "nlminbwrap")
## 
## REML criterion at convergence: 282.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1952 -0.5772 -0.0648  0.5064  8.6797 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev. Corr 
##  ResponseId (Intercept) 0.021201 0.14560       
##  item       (Intercept) 0.009187 0.09585       
##             distancec   0.009017 0.09496  -0.71
##  Residual               0.053616 0.23155       
## Number of obs: 3020, groups:  ResponseId, 302; item, 10
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)  2.60347    0.03297 11.70295  78.972  < 2e-16 ***
## distancec    0.28551    0.03542 14.90050   8.061  8.2e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr)
## distancec -0.700
summary(lmer_lcm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: lcm ~ 1 + distance + (1 | ResponseId) + (1 + distance | item)
##    Data: linguistic_long
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 4893.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2393 -0.5763  0.0099  0.5781  3.8898 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev. Corr
##  ResponseId (Intercept) 0.03149  0.1775       
##  item       (Intercept) 0.02015  0.1419       
##             distancec   0.07940  0.2818   0.02
##  Residual               0.26793  0.5176       
## Number of obs: 3019, groups:  ResponseId, 302; item, 10
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)  3.20939    0.04882 10.70782  65.733 2.63e-15 ***
## distancec    0.03896    0.09335  9.92756   0.417    0.685    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr)
## distancec -0.062
summary(lmer_lcm_pd)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: lcm_pd ~ 1 + distance + (1 | ResponseId) + (1 + distance | item)
##    Data: linguistic_long
## Control: lmerControl(optimizer = "nlminbwrap")
## 
## REML criterion at convergence: 3842.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7776 -0.5974 -0.0246  0.5806  5.8059 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev. Corr 
##  ResponseId (Intercept) 0.02212  0.1487        
##  item       (Intercept) 0.01339  0.1157        
##             distancec   0.04321  0.2079   -0.37
##  Residual               0.18945  0.4353        
## Number of obs: 3019, groups:  ResponseId, 302; item, 10
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)  1.41625    0.03999 10.79991  35.418 1.61e-12 ***
## distancec   -0.11499    0.06976 10.18888  -1.648     0.13    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr)
## distancec -0.410

Additional LCM Analyses

Effect for Activities Only

d_lcm_ac
##   ID         d         var  ci_lower  ci_upper
## 1  1 0.3306758 0.002692923 0.2288849 0.4324667
summary(lmer_lcm_ac)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: lcm ~ 1 + distance + (1 | ResponseId) + (1 + distance | item)
##    Data: linguistic_long %>% filter(type == "ac")
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 2390.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9210 -0.5842  0.0135  0.5878  3.9114 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev. Corr 
##  ResponseId (Intercept) 0.027623 0.16620       
##  item       (Intercept) 0.004477 0.06691       
##             distancec   0.045080 0.21232  -0.96
##  Residual               0.258197 0.50813       
## Number of obs: 1509, groups:  ResponseId, 302; item, 5
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)  3.17796    0.03738  5.21296  85.021 2.15e-09 ***
## distancec   -0.17931    0.10034  4.30745  -1.787    0.143    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr)
## distancec -0.863

Effect for Activities Only (Modified Puddle-Ducks Version)

d_lcm_pd_ac
##   ID         d         var  ci_lower ci_upper
## 1  1 0.5442957 0.002754937 0.4413394 0.647252
summary(lmer_lcm_pd_ac)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: lcm_pd ~ 1 + distance + (1 | ResponseId) + (1 + distance | item)
##    Data: linguistic_long %>% filter(type == "ac")
## Control: lmerControl(optimizer = "nlminbwrap")
## 
## REML criterion at convergence: 1677.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2517 -0.5752 -0.0427  0.5876  5.8140 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev. Corr 
##  ResponseId (Intercept) 0.027877 0.16696       
##  item       (Intercept) 0.022905 0.15134       
##             distancec   0.004615 0.06794  -0.41
##  Residual               0.153302 0.39154       
## Number of obs: 1509, groups:  ResponseId, 302; item, 5
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)  1.46616    0.07037  4.30069   20.84 1.75e-05 ***
## distancec   -0.24164    0.04124  6.50514   -5.86 0.000816 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr)
## distancec -0.416

Summary of Validations Studies

validation_plot_data
##                         ID           d         var   ci_lower    ci_upper percentile_ejelov_luke
## 1                      BIF  1.41884331 0.011898202  1.2044363 1.633250369              0.5000000
## 2           Categorization  0.08676957 0.003846699 -0.0349298 0.208468953              0.0000000
## 3             Segmentation  0.06592508 0.009921950 -0.1298945 0.261744651              0.0000000
## 4  Quantity Estimation (a) -0.08105716 0.016210130 -0.3318366 0.169722320              0.0000000
## 5  Quantity Estimation (b)  0.09970903 0.016549638 -0.1537092 0.353127287              0.0000000
## 6        Length Estimation  0.09718508 0.016756621 -0.1578293 0.352199495              0.0000000
## 7   Spillover Effect (BIF) -0.01850364 0.007171503 -0.1844826 0.147475375              0.0000000
## 8        Folk Concreteness  1.00155660 0.001493545  0.9257806 1.077332551              0.3660714
## 9                      LCM -0.06532858 0.001328546 -0.1367964 0.006139257              0.0000000
## 10          LCM (Modified)  0.23749445 0.001337186  0.1657946 0.309194301              0.0000000
knitr::include_graphics("./figures/climr_validation_plot.png")