Construal Level International Multilab Replication (CLIMR) Project: Linguistic Concreteness Validation
CLIMR Team 2024-06-04
These validations are documented here: https://osf.io/kgrs9/
Previous relevant analyses by the Puddle-Ducks can be found here: https://www.rabbitsnore.com/2019/02/there-might-be-problems-with-automated.html
d_folk
## ID d var ci_lower ci_upper
## 1 Folk Concreteness 1.001557 0.001493545 0.9257806 1.077333
d_lcm
## ID d var ci_lower ci_upper
## 1 LCM -0.06532858 0.001328546 -0.1367964 0.006139257
d_lcm_pd
## ID d var ci_lower ci_upper
## 1 LCM (Modified) 0.2374944 0.001337186 0.1657946 0.3091943
knitr::include_graphics("./figures/climr_linguistic-measure-swarm_figure.png")
summary(lmer_folk)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: concreteness ~ 1 + distance + (1 | ResponseId) + (1 + distance | item)
## Data: linguistic_long
## Control: lmerControl(optimizer = "nlminbwrap")
##
## REML criterion at convergence: 282.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.1952 -0.5772 -0.0648 0.5064 8.6797
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ResponseId (Intercept) 0.021201 0.14560
## item (Intercept) 0.009187 0.09585
## distancec 0.009017 0.09496 -0.71
## Residual 0.053616 0.23155
## Number of obs: 3020, groups: ResponseId, 302; item, 10
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.60347 0.03297 11.70295 78.972 < 2e-16 ***
## distancec 0.28551 0.03542 14.90050 8.061 8.2e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## distancec -0.700
summary(lmer_lcm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: lcm ~ 1 + distance + (1 | ResponseId) + (1 + distance | item)
## Data: linguistic_long
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 4893.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.2393 -0.5763 0.0099 0.5781 3.8898
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ResponseId (Intercept) 0.03149 0.1775
## item (Intercept) 0.02015 0.1419
## distancec 0.07940 0.2818 0.02
## Residual 0.26793 0.5176
## Number of obs: 3019, groups: ResponseId, 302; item, 10
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.20939 0.04882 10.70782 65.733 2.63e-15 ***
## distancec 0.03896 0.09335 9.92756 0.417 0.685
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## distancec -0.062
summary(lmer_lcm_pd)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: lcm_pd ~ 1 + distance + (1 | ResponseId) + (1 + distance | item)
## Data: linguistic_long
## Control: lmerControl(optimizer = "nlminbwrap")
##
## REML criterion at convergence: 3842.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.7776 -0.5974 -0.0246 0.5806 5.8059
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ResponseId (Intercept) 0.02212 0.1487
## item (Intercept) 0.01339 0.1157
## distancec 0.04321 0.2079 -0.37
## Residual 0.18945 0.4353
## Number of obs: 3019, groups: ResponseId, 302; item, 10
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 1.41625 0.03999 10.79991 35.418 1.61e-12 ***
## distancec -0.11499 0.06976 10.18888 -1.648 0.13
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## distancec -0.410
d_lcm_ac
## ID d var ci_lower ci_upper
## 1 1 0.3306758 0.002692923 0.2288849 0.4324667
summary(lmer_lcm_ac)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: lcm ~ 1 + distance + (1 | ResponseId) + (1 + distance | item)
## Data: linguistic_long %>% filter(type == "ac")
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 2390.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.9210 -0.5842 0.0135 0.5878 3.9114
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ResponseId (Intercept) 0.027623 0.16620
## item (Intercept) 0.004477 0.06691
## distancec 0.045080 0.21232 -0.96
## Residual 0.258197 0.50813
## Number of obs: 1509, groups: ResponseId, 302; item, 5
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.17796 0.03738 5.21296 85.021 2.15e-09 ***
## distancec -0.17931 0.10034 4.30745 -1.787 0.143
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## distancec -0.863
d_lcm_pd_ac
## ID d var ci_lower ci_upper
## 1 1 0.5442957 0.002754937 0.4413394 0.647252
summary(lmer_lcm_pd_ac)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: lcm_pd ~ 1 + distance + (1 | ResponseId) + (1 + distance | item)
## Data: linguistic_long %>% filter(type == "ac")
## Control: lmerControl(optimizer = "nlminbwrap")
##
## REML criterion at convergence: 1677.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2517 -0.5752 -0.0427 0.5876 5.8140
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ResponseId (Intercept) 0.027877 0.16696
## item (Intercept) 0.022905 0.15134
## distancec 0.004615 0.06794 -0.41
## Residual 0.153302 0.39154
## Number of obs: 1509, groups: ResponseId, 302; item, 5
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 1.46616 0.07037 4.30069 20.84 1.75e-05 ***
## distancec -0.24164 0.04124 6.50514 -5.86 0.000816 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## distancec -0.416
validation_plot_data
## ID d var ci_lower ci_upper percentile_ejelov_luke
## 1 BIF 1.41884331 0.011898202 1.2044363 1.633250369 0.5000000
## 2 Categorization 0.08676957 0.003846699 -0.0349298 0.208468953 0.0000000
## 3 Segmentation 0.06592508 0.009921950 -0.1298945 0.261744651 0.0000000
## 4 Quantity Estimation (a) -0.08105716 0.016210130 -0.3318366 0.169722320 0.0000000
## 5 Quantity Estimation (b) 0.09970903 0.016549638 -0.1537092 0.353127287 0.0000000
## 6 Length Estimation 0.09718508 0.016756621 -0.1578293 0.352199495 0.0000000
## 7 Spillover Effect (BIF) -0.01850364 0.007171503 -0.1844826 0.147475375 0.0000000
## 8 Folk Concreteness 1.00155660 0.001493545 0.9257806 1.077332551 0.3660714
## 9 LCM -0.06532858 0.001328546 -0.1367964 0.006139257 0.0000000
## 10 LCM (Modified) 0.23749445 0.001337186 0.1657946 0.309194301 0.0000000
knitr::include_graphics("./figures/climr_validation_plot.png")