Skip to content

Commit

Permalink
Remove fixed known issue from README
Browse files Browse the repository at this point in the history
  • Loading branch information
alexpghayes committed Aug 21, 2023
1 parent e0b9b9c commit 9400f43
Show file tree
Hide file tree
Showing 2 changed files with 20 additions and 30 deletions.
4 changes: 0 additions & 4 deletions README.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -115,10 +115,6 @@ In the second stage of graph sampling, the options are:

- `allow_self_edges`: Whether nodes should be allowed to connect to themselves. Either `TRUE` or `FALSE`.

## Known issues

Sampling blockmodels with very small numbers of nodes (or blockmodels with the number of blocks `k` on the same order as `n`) results in a degeneracy that can cause issues.

## Related work

[`igraph`](https://igraph.org/r/) allows users to sample SBMs (in $\mathcal O(m + n + k^2)$ time) and random dot product graphs (in $\mathcal O(n^2 k)$ time).
Expand Down
46 changes: 20 additions & 26 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -119,7 +119,7 @@ sample_edgelist(sbm)
#> 8 119 210
#> 9 41 197
#> 10 145 175
#> # … with 4,975 more rows
#> # 4,975 more rows
```

but we can just as easily obtain the graph as a sparse matrix
Expand All @@ -145,17 +145,17 @@ or an igraph object

``` r
sample_igraph(sbm)
#> IGRAPH a506dc4 UN-- 1000 5033 --
#> IGRAPH 3386a61 UN-- 1000 5033 --
#> + attr: name (v/c)
#> + edges from a506dc4 (vertex names):
#> + edges from 3386a61 (vertex names):
#> [1] 63 --76 135--215 59 --182 21 --134 180--218 53 --189 138--139 21 --78
#> [9] 49 --70 76 --127 6 --139 64 --214 31 --132 56 --93 75 --144 9 --185
#> [17] 33 --150 115--165 163--213 53 --6 47 --179 25 --26 7 --51 10 --55
#> [17] 33 --150 115--165 163--213 6 --53 47 --179 25 --26 7 --51 10 --55
#> [25] 120--183 43 --152 25 --34 84 --216 114--191 34 --127 152--164 178--189
#> [33] 106--181 28 --38 41 --89 34 --139 6 --213 24 --153 32 --173 47 --111
#> [41] 157--205 108--133 98 --116 26 --117 18 --194 32 --18 74 --209 18 --128
#> [49] 13 --127 26 --12 1 --133 52 --72 128--213 13 --173 61 --214 33 --142
#> [57] 22 --111 163--191 191--205 108--5 9 --72 6 --217 113--122 90 --154
#> [41] 157--205 108--133 98 --116 26 --117 18 --194 18 --32 74 --209 18 --128
#> [49] 13 --127 12 --26 1 --133 52 --72 128--213 13 --173 61 --214 33 --142
#> [57] 22 --111 163--191 191--205 5 --108 9 --72 6 --217 113--122 90 --154
#> + ... omitted several edges
```

Expand Down Expand Up @@ -192,30 +192,24 @@ There are several essential tools to modify graph sampling that you
should know about. First there are options that affect the latent factor
sampling:

- `expected_degree`: Set the expected average degree of the graph by
scaling sampling probabilities. We *strongly, strongly* recommend
that you always set this option. If you do not, it is easy
accidentally sample from large and dense graphs.
- `expected_degree`: Set the expected average degree of the graph by
scaling sampling probabilities. We *strongly, strongly* recommend that
you always set this option. If you do not, it is easy accidentally
sample from large and dense graphs.

- `expected_density`: Set the expected density of the graph by scaling
sampling probabilities. You cannot specify both `expected_degree`
and `expected_density` at the same time.
- `expected_density`: Set the expected density of the graph by scaling
sampling probabilities. You cannot specify both `expected_degree` and
`expected_density` at the same time.

In the second stage of graph sampling, the options are:

- `poisson_edges`: Either `TRUE` or `FALSE` depending on whether you
would like a Bernoulli graph or a Poisson multi-graph. Scaling via
`expected_degree` assumes a Poisson multi-graph, with some limited
exceptions.
- `poisson_edges`: Either `TRUE` or `FALSE` depending on whether you
would like a Bernoulli graph or a Poisson multi-graph. Scaling via
`expected_degree` assumes a Poisson multi-graph, with some limited
exceptions.

- `allow_self_edges`: Whether nodes should be allowed to connect to
themselves. Either `TRUE` or `FALSE`.

## Known issues

Sampling blockmodels with very small numbers of nodes (or blockmodels
with the number of blocks `k` on the same order as `n`) results in a
degeneracy that can cause issues.
- `allow_self_edges`: Whether nodes should be allowed to connect to
themselves. Either `TRUE` or `FALSE`.

## Related work

Expand Down

0 comments on commit 9400f43

Please sign in to comment.