Skip to content

RuSaG0/levenshtein-js

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

levenshtein-js

Usage

Steps:

levenshteinDistance({a: 'fish', b: 'fosh'}).steps // {1}
levenshteinDistance({a: 'fish', b: 'Fish'}).steps // {1} case sensitive

relative & similarity

levenshteinDistance({a:'github', b: 'gethub'}); 
/* {
    relative: 0.16666666666666666, 
    similarity: 0.8333333333333334, 
    steps: 1 
} */

Try to take best from all js impls

https://github.com/gustf/js-levenshtein The only one impl algorithm that has fn Big O notation of work less than O (n2) (also known as fast levenshtein). This can be improved by adding the maximum distance after which it makes no sense to go through the matrix.

https://github.com/tad-lispy/node-damerau-levenshtein Has scoring model(relative, similarity), I use it

New:

maxDistance model

Optional parameter. I recommend using it ONLY if there is a strong need for optimization. It slightly increases speed, but noticeably decreases accuracy (relative/similarity).In most cases don't use!

levenshteinDistance({a: 'pen_pineapple_apple_pen', b: 'pen'}).steps // {20} 
levenshteinDistance({a: 'pen_pineapple_apple_pen', b: 'pen', maxDistance: 5}).steps // {5} You can set maxDistance for faster work. By default it's doesn't matter

Upgrade smart search

If you want to make search more smart, you can upgrade score method. For Example:

let bonusScore = 0;
let сInclude = .05;

function prepare(_dd) {
    const relative = Math.max(0, (_dd / _b.length - bonusScore));
    const similarity = 1 - relative;
    return {
      steps:_dd,
      relative,
      similarity
    };
  }

if(_b.includes(_a))
    bonusScore+= сInclude * _a.length;

levenshteinDistance({a: '23176515', b: 'signage-23176515'}) // { relative: 0.09999999999999998, similarity: 0.9, steps: 8}
levenshteinDistance({a: 'Ruslan', b: 'Ruslan-Yoda'}) // { relative: 0.09999999999999998, similarity: 0.9, steps: 8}

Materials for understand

ENG

RUS

Releases

No releases published

Packages

No packages published