-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetector3d_template.py
419 lines (353 loc) · 18.9 KB
/
detector3d_template.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import os
import torch
import torch.nn as nn
from ...ops.iou3d_nms import iou3d_nms_utils
from .. import backbones_2d, backbones_3d, dense_heads, roi_heads
from ..backbones_2d import map_to_bev
from ..backbones_3d import pfe, vfe
from ..model_utils import model_nms_utils
class Detector3DTemplate(nn.Module):
def __init__(self, model_cfg, num_class, dataset):
super().__init__()
self.model_cfg = model_cfg
self.num_class = num_class
self.dataset = dataset
self.class_names = dataset.class_names
self.register_buffer('global_step', torch.LongTensor(1).zero_())
self.module_topology = [
'vfe', 'backbone_3d', 'map_to_bev_module', 'pfe',
'backbone_2d', 'dense_head', 'point_head', 'point_head2', 'roi_head', 'roi_head2'
]
@property
def mode(self):
return 'TRAIN' if self.training else 'TEST'
def update_global_step(self):
self.global_step += 1
def build_networks(self):
model_info_dict = {
'module_list': [],
'num_rawpoint_features': self.dataset.point_feature_encoder.num_point_features,
'num_point_features': self.dataset.point_feature_encoder.num_point_features,
'grid_size': self.dataset.grid_size,
'point_cloud_range': self.dataset.point_cloud_range,
'voxel_size': self.dataset.voxel_size,
'depth_downsample_factor': self.dataset.depth_downsample_factor
}
for module_name in self.module_topology:
module, model_info_dict = getattr(self, 'build_%s' % module_name)(
model_info_dict=model_info_dict
)
self.add_module(module_name, module)
return model_info_dict['module_list']
def build_vfe(self, model_info_dict):
if self.model_cfg.get('VFE', None) is None:
return None, model_info_dict
vfe_module = vfe.__all__[self.model_cfg.VFE.NAME](
model_cfg=self.model_cfg.VFE,
num_point_features=model_info_dict['num_point_features'],
point_cloud_range=model_info_dict['point_cloud_range'],
voxel_size=model_info_dict['voxel_size'],
grid_size=model_info_dict['grid_size'],
depth_downsample_factor=model_info_dict['depth_downsample_factor']
)
model_info_dict['num_point_features'] = vfe_module.get_output_feature_dim()
model_info_dict['module_list'].append(vfe_module)
return vfe_module, model_info_dict
def build_backbone_3d(self, model_info_dict):
if self.model_cfg.get('BACKBONE_3D', None) is None:
return None, model_info_dict
backbone_3d_module = backbones_3d.__all__[self.model_cfg.BACKBONE_3D.NAME](
model_cfg=self.model_cfg.BACKBONE_3D,
input_channels=model_info_dict['num_point_features'],
grid_size=model_info_dict['grid_size'],
voxel_size=model_info_dict['voxel_size'],
point_cloud_range=model_info_dict['point_cloud_range']
)
model_info_dict['module_list'].append(backbone_3d_module)
model_info_dict['num_point_features'] = backbone_3d_module.num_point_features
model_info_dict['num_point_features2'] = backbone_3d_module.num_point_features2
model_info_dict['backbone_channels'] = backbone_3d_module.backbone_channels \
if hasattr(backbone_3d_module, 'backbone_channels') else None
return backbone_3d_module, model_info_dict
def build_map_to_bev_module(self, model_info_dict):
if self.model_cfg.get('MAP_TO_BEV', None) is None:
return None, model_info_dict
map_to_bev_module = map_to_bev.__all__[self.model_cfg.MAP_TO_BEV.NAME](
model_cfg=self.model_cfg.MAP_TO_BEV,
grid_size=model_info_dict['grid_size']
)
model_info_dict['module_list'].append(map_to_bev_module)
model_info_dict['num_bev_features'] = map_to_bev_module.num_bev_features
return map_to_bev_module, model_info_dict
def build_backbone_2d(self, model_info_dict):
if self.model_cfg.get('BACKBONE_2D', None) is None:
return None, model_info_dict
backbone_2d_module = backbones_2d.__all__[self.model_cfg.BACKBONE_2D.NAME](
model_cfg=self.model_cfg.BACKBONE_2D,
input_channels=model_info_dict['num_bev_features']
)
model_info_dict['module_list'].append(backbone_2d_module)
model_info_dict['num_bev_features'] = backbone_2d_module.num_bev_features
return backbone_2d_module, model_info_dict
def build_pfe(self, model_info_dict):
if self.model_cfg.get('PFE', None) is None:
return None, model_info_dict
pfe_module = pfe.__all__[self.model_cfg.PFE.NAME](
model_cfg=self.model_cfg.PFE,
voxel_size=model_info_dict['voxel_size'],
point_cloud_range=model_info_dict['point_cloud_range'],
num_bev_features=model_info_dict['num_bev_features'],
num_rawpoint_features=model_info_dict['num_rawpoint_features']
)
model_info_dict['module_list'].append(pfe_module)
model_info_dict['num_point_features'] = pfe_module.num_point_features
model_info_dict['num_point_features_before_fusion'] = pfe_module.num_point_features_before_fusion
return pfe_module, model_info_dict
def build_dense_head(self, model_info_dict):
if self.model_cfg.get('DENSE_HEAD', None) is None:
return None, model_info_dict
dense_head_module = dense_heads.__all__[self.model_cfg.DENSE_HEAD.NAME](
model_cfg=self.model_cfg.DENSE_HEAD,
input_channels=model_info_dict['num_bev_features'],
num_class=self.num_class if not self.model_cfg.DENSE_HEAD.CLASS_AGNOSTIC else 1,
class_names=self.class_names,
grid_size=model_info_dict['grid_size'],
point_cloud_range=model_info_dict['point_cloud_range'],
predict_boxes_when_training=self.model_cfg.get('ROI_HEAD', False)
)
model_info_dict['module_list'].append(dense_head_module)
return dense_head_module, model_info_dict
def build_point_head(self, model_info_dict):
if self.model_cfg.get('POINT_HEAD', None) is None:
return None, model_info_dict
if self.model_cfg.POINT_HEAD.get('USE_POINT_FEATURES_BEFORE_FUSION', False):
num_point_features = model_info_dict['num_point_features_before_fusion']
else:
num_point_features = model_info_dict['num_point_features']
point_head_module = dense_heads.__all__[self.model_cfg.POINT_HEAD.NAME](
model_cfg=self.model_cfg.POINT_HEAD,
input_channels=num_point_features,
num_class=self.num_class if not self.model_cfg.POINT_HEAD.CLASS_AGNOSTIC else 1,
predict_boxes_when_training=self.model_cfg.get('ROI_HEAD', False)
)
model_info_dict['module_list'].append(point_head_module)
return point_head_module, model_info_dict
def build_point_head2(self, model_info_dict):
if self.model_cfg.get('POINT_HEAD', None) is None:
return None, model_info_dict
if self.model_cfg.POINT_HEAD.get('USE_POINT_FEATURES_BEFORE_FUSION', False):
num_point_features = model_info_dict['num_point_features_before_fusion']
else:
num_point_features = model_info_dict['num_point_features2']
point_head_module = dense_heads.__all__[self.model_cfg.POINT_HEAD.NAME](
model_cfg=self.model_cfg.POINT_HEAD,
input_channels=num_point_features,
num_class=self.num_class if not self.model_cfg.POINT_HEAD.CLASS_AGNOSTIC else 1,
predict_boxes_when_training=self.model_cfg.get('ROI_HEAD', False)
)
model_info_dict['module_list'].append(point_head_module)
return point_head_module, model_info_dict
def build_roi_head(self, model_info_dict):
if self.model_cfg.get('ROI_HEAD', None) is None:
return None, model_info_dict
point_head_module = roi_heads.__all__[self.model_cfg.ROI_HEAD.NAME](
model_cfg=self.model_cfg.ROI_HEAD,
input_channels=model_info_dict['num_point_features'],
backbone_channels=model_info_dict['backbone_channels'],
point_cloud_range=model_info_dict['point_cloud_range'],
voxel_size=model_info_dict['voxel_size'],
num_class=self.num_class if not self.model_cfg.ROI_HEAD.CLASS_AGNOSTIC else 1,
)
model_info_dict['module_list'].append(point_head_module)
return point_head_module, model_info_dict
def build_roi_head2(self, model_info_dict):
if self.model_cfg.get('ROI_HEAD2', None) is None:
return None, model_info_dict
point_head_module = roi_heads.__all__[self.model_cfg.ROI_HEAD2.NAME](
model_cfg=self.model_cfg.ROI_HEAD2,
input_channels=model_info_dict['num_point_features2'],
backbone_channels=model_info_dict['backbone_channels'],
point_cloud_range=model_info_dict['point_cloud_range'],
voxel_size=model_info_dict['voxel_size'],
num_class=self.num_class if not self.model_cfg.ROI_HEAD2.CLASS_AGNOSTIC else 1,
)
model_info_dict['module_list'].append(point_head_module)
return point_head_module, model_info_dict
def forward(self, **kwargs):
raise NotImplementedError
def post_processing(self, batch_dict):
"""
Args:
batch_dict:
batch_size:
batch_cls_preds: (B, num_boxes, num_classes | 1) or (N1+N2+..., num_classes | 1)
or [(B, num_boxes, num_class1), (B, num_boxes, num_class2) ...]
multihead_label_mapping: [(num_class1), (num_class2), ...]
batch_box_preds: (B, num_boxes, 7+C) or (N1+N2+..., 7+C)
cls_preds_normalized: indicate whether batch_cls_preds is normalized
batch_index: optional (N1+N2+...)
has_class_labels: True/False
roi_labels: (B, num_rois) 1 .. num_classes
batch_pred_labels: (B, num_boxes, 1)
Returns:
"""
post_process_cfg = self.model_cfg.POST_PROCESSING
batch_size = batch_dict['batch_size']
recall_dict = {}
pred_dicts = []
for index in range(batch_size):
if batch_dict.get('batch_index', None) is not None:
assert batch_dict['batch_box_preds'].shape.__len__() == 2
batch_mask = (batch_dict['batch_index'] == index)
else:
assert batch_dict['batch_box_preds'].shape.__len__() == 3
batch_mask = index
box_preds = batch_dict['batch_box_preds'][batch_mask]
src_box_preds = box_preds
if not isinstance(batch_dict['batch_cls_preds'], list):
cls_preds = batch_dict['batch_cls_preds'][batch_mask]
src_cls_preds = cls_preds
assert cls_preds.shape[1] in [1, self.num_class]
if not batch_dict['cls_preds_normalized']:
cls_preds = torch.sigmoid(cls_preds)
else:
cls_preds = [x[batch_mask] for x in batch_dict['batch_cls_preds']]
src_cls_preds = cls_preds
if not batch_dict['cls_preds_normalized']:
cls_preds = [torch.sigmoid(x) for x in cls_preds]
if post_process_cfg.NMS_CONFIG.MULTI_CLASSES_NMS:
if not isinstance(cls_preds, list):
cls_preds = [cls_preds]
multihead_label_mapping = [torch.arange(1, self.num_class, device=cls_preds[0].device)]
else:
multihead_label_mapping = batch_dict['multihead_label_mapping']
cur_start_idx = 0
pred_scores, pred_labels, pred_boxes = [], [], []
for cur_cls_preds, cur_label_mapping in zip(cls_preds, multihead_label_mapping):
assert cur_cls_preds.shape[1] == len(cur_label_mapping)
cur_box_preds = box_preds[cur_start_idx: cur_start_idx + cur_cls_preds.shape[0]]
cur_pred_scores, cur_pred_labels, cur_pred_boxes = model_nms_utils.multi_classes_nms(
cls_scores=cur_cls_preds, box_preds=cur_box_preds,
nms_config=post_process_cfg.NMS_CONFIG,
score_thresh=post_process_cfg.SCORE_THRESH
)
cur_pred_labels = cur_label_mapping[cur_pred_labels]
pred_scores.append(cur_pred_scores)
pred_labels.append(cur_pred_labels)
pred_boxes.append(cur_pred_boxes)
cur_start_idx += cur_cls_preds.shape[0]
final_scores = torch.cat(pred_scores, dim=0)
final_labels = torch.cat(pred_labels, dim=0)
final_boxes = torch.cat(pred_boxes, dim=0)
else:
cls_preds, label_preds = torch.max(cls_preds, dim=-1)
if batch_dict.get('has_class_labels', False):
label_key = 'roi_labels' if 'roi_labels' in batch_dict else 'batch_pred_labels'
label_preds = batch_dict[label_key][index]
else:
label_preds = label_preds + 1
selected, selected_scores = model_nms_utils.class_agnostic_nms(
box_scores=cls_preds, box_preds=box_preds,
nms_config=post_process_cfg.NMS_CONFIG,
score_thresh=post_process_cfg.SCORE_THRESH
)
if post_process_cfg.OUTPUT_RAW_SCORE:
max_cls_preds, _ = torch.max(src_cls_preds, dim=-1)
selected_scores = max_cls_preds[selected]
final_scores = selected_scores
final_labels = label_preds[selected]
final_boxes = box_preds[selected]
recall_dict = self.generate_recall_record(
box_preds=final_boxes if 'rois' not in batch_dict else src_box_preds,
recall_dict=recall_dict, batch_index=index, data_dict=batch_dict,
thresh_list=post_process_cfg.RECALL_THRESH_LIST
)
record_dict = {
'pred_boxes': final_boxes,
'pred_scores': final_scores,
'pred_labels': final_labels
}
pred_dicts.append(record_dict)
return pred_dicts, recall_dict
@staticmethod
def generate_recall_record(box_preds, recall_dict, batch_index, data_dict=None, thresh_list=None):
if 'gt_boxes' not in data_dict:
return recall_dict
rois = data_dict['rois'][batch_index] if 'rois' in data_dict else None
gt_boxes = data_dict['gt_boxes'][batch_index]
if recall_dict.__len__() == 0:
recall_dict = {'gt': 0}
for cur_thresh in thresh_list:
recall_dict['roi_%s' % (str(cur_thresh))] = 0
recall_dict['rcnn_%s' % (str(cur_thresh))] = 0
cur_gt = gt_boxes
k = cur_gt.__len__() - 1
while k > 0 and cur_gt[k].sum() == 0:
k -= 1
cur_gt = cur_gt[:k + 1]
if cur_gt.shape[0] > 0:
if box_preds.shape[0] > 0:
iou3d_rcnn = iou3d_nms_utils.boxes_iou3d_gpu(box_preds[:, 0:7], cur_gt[:, 0:7])
else:
iou3d_rcnn = torch.zeros((0, cur_gt.shape[0]))
if rois is not None:
iou3d_roi = iou3d_nms_utils.boxes_iou3d_gpu(rois[:, 0:7], cur_gt[:, 0:7])
for cur_thresh in thresh_list:
if iou3d_rcnn.shape[0] == 0:
recall_dict['rcnn_%s' % str(cur_thresh)] += 0
else:
rcnn_recalled = (iou3d_rcnn.max(dim=0)[0] > cur_thresh).sum().item()
recall_dict['rcnn_%s' % str(cur_thresh)] += rcnn_recalled
if rois is not None:
roi_recalled = (iou3d_roi.max(dim=0)[0] > cur_thresh).sum().item()
recall_dict['roi_%s' % str(cur_thresh)] += roi_recalled
recall_dict['gt'] += cur_gt.shape[0]
else:
gt_iou = box_preds.new_zeros(box_preds.shape[0])
return recall_dict
def load_params_from_file(self, filename, logger, to_cpu=False):
if not os.path.isfile(filename):
raise FileNotFoundError
logger.info('==> Loading parameters from checkpoint %s to %s' % (filename, 'CPU' if to_cpu else 'GPU'))
loc_type = torch.device('cpu') if to_cpu else None
checkpoint = torch.load(filename, map_location=loc_type)
model_state_disk = checkpoint['model_state']
if 'version' in checkpoint:
logger.info('==> Checkpoint trained from version: %s' % checkpoint['version'])
update_model_state = {}
for key, val in model_state_disk.items():
if key in self.state_dict() and self.state_dict()[key].shape == model_state_disk[key].shape:
update_model_state[key] = val
# logger.info('Update weight %s: %s' % (key, str(val.shape)))
state_dict = self.state_dict()
state_dict.update(update_model_state)
self.load_state_dict(state_dict)
for key in state_dict:
if key not in update_model_state:
logger.info('Not updated weight %s: %s' % (key, str(state_dict[key].shape)))
logger.info('==> Done (loaded %d/%d)' % (len(update_model_state), len(self.state_dict())))
def load_params_with_optimizer(self, filename, to_cpu=False, optimizer=None, logger=None):
if not os.path.isfile(filename):
raise FileNotFoundError
logger.info('==> Loading parameters from checkpoint %s to %s' % (filename, 'CPU' if to_cpu else 'GPU'))
loc_type = torch.device('cpu') if to_cpu else None
checkpoint = torch.load(filename, map_location=loc_type)
epoch = checkpoint.get('epoch', -1)
it = checkpoint.get('it', 0.0)
self.load_state_dict(checkpoint['model_state'])
if optimizer is not None:
if 'optimizer_state' in checkpoint and checkpoint['optimizer_state'] is not None:
logger.info('==> Loading optimizer parameters from checkpoint %s to %s'
% (filename, 'CPU' if to_cpu else 'GPU'))
optimizer.load_state_dict(checkpoint['optimizer_state'])
else:
assert filename[-4] == '.', filename
src_file, ext = filename[:-4], filename[-3:]
optimizer_filename = '%s_optim.%s' % (src_file, ext)
if os.path.exists(optimizer_filename):
optimizer_ckpt = torch.load(optimizer_filename, map_location=loc_type)
optimizer.load_state_dict(optimizer_ckpt['optimizer_state'])
if 'version' in checkpoint:
print('==> Checkpoint trained from version: %s' % checkpoint['version'])
logger.info('==> Done')
return it, epoch