Skip to content

Developed a web application that predicts the quality of wines based on various features using machine learning techniques. The application will be built using the Flask framework, and it will integrate MLflow for efficient experiment tracking and model management.

License

Notifications You must be signed in to change notification settings

SHOCKWAVE07/e2eMLwithMLFLOW

Repository files navigation

Wine Quality Prediction Web App using MLflow, Docker, AWS EC2, and GitHub Actions

workflows

  1. Update config.yaml
  2. Update schema.yaml
  3. Update params.yaml
  4. Update the entity
  5. Update the configuration manager is src config
  6. Update the components
  7. Update the pipeline
  8. Update the main.py
  9. Update the app.py

How to run?

STEPS:

Clone the repository

https://github.com/SHOCKWAVE07/e2eMLwithMLFLOW

STEP 01- Create a conda environment after opening the repository

conda create -n e2eMLwithMLFLOW python=3.8 -y
conda activate e2eMLwithMLFLOW

STEP 02- install the requirements

pip install -r requirements.txt
# Finally run the following command
python app.py

Now,

open up you local host and port

MLflow

Documentation

cmd
  • mlflow ui

dagshub

dagshub

MLFLOW_TRACKING_URI=https://dagshub.com/SHOCKWAVE07/e2eMLwithMLFLOW.mlflow
MLFLOW_TRACKING_USERNAME=SHOCKWAVE07
MLFLOW_TRACKING_PASSWORD=9019dc0d271c3526e6d06b2e96d53ddac633886a
python script.py

Run this to export as env variables:

setx MLFLOW_TRACKING_URI=https://dagshub.com/SHOCKWAVE07/e2eMLwithMLFLOW.mlflow

setx MLFLOW_TRACKING_USERNAME=SHOCKWAVE07

setx MLFLOW_TRACKING_PASSWORD=9019dc0d271c3526e6d06b2e96d53ddac633886a

AWS-CICD-Deployment-with-Github-Actions

1. Login to AWS console.

2. Create IAM user for deployment

#with specific access

1. EC2 access : It is virtual machine

2. ECR: Elastic Container registry to save your docker image in aws


#Description: About the deployment

1. Build docker image of the source code

2. Push your docker image to ECR

3. Launch Your EC2 

4. Pull Your image from ECR in EC2

5. Lauch your docker image in EC2

#Policy:

1. AmazonEC2ContainerRegistryFullAccess

2. AmazonEC2FullAccess

3. Create ECR repo to store/save docker image

- Save the URI: 580907923428.dkr.ecr.ap-south-1.amazonaws.com/e2eml

4. Create EC2 machine (Ubuntu)

5. Open EC2 and Install docker in EC2 Machine:

#optinal

sudo apt-get update -y

sudo apt-get upgrade

#required

curl -fsSL https://get.docker.com -o get-docker.sh

sudo sh get-docker.sh

sudo usermod -aG docker ubuntu

newgrp docker

6. Configure EC2 as self-hosted runner:

setting>actions>runner>new self hosted runner> choose os> then run command one by one

7. Setup github secrets:

AWS_ACCESS_KEY_ID=

AWS_SECRET_ACCESS_KEY=

AWS_REGION = us-east-1

AWS_ECR_LOGIN_URI = demo>>  566373416292.dkr.ecr.ap-south-1.amazonaws.com

ECR_REPOSITORY_NAME = simple-app

About MLflow

MLflow

  • Its Production Grade
  • Trace all of your expriements
  • Logging & tagging your model

About

Developed a web application that predicts the quality of wines based on various features using machine learning techniques. The application will be built using the Flask framework, and it will integrate MLflow for efficient experiment tracking and model management.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published