Skip to content

SHOCKWAVE07/nyc-taxi-mlops-dvc

Repository files navigation

NYC Taxi Trip-Duration Estimation

This project estimates the trip duration for NYC taxis using machine learning. The data used in this project is sourced from Kaggle. The project is structured using Cookiecutter for folder templates and follows the machine learning lifecycle initially in Jupyter Notebook and later in Python scripts.

Alt text

Project Overview

This project involves:

  • Data collection and preprocessing
  • Feature engineering
  • Model training and evaluation
  • Deployment of the model as a web service using FastAPI
  • Containerization using Docker
  • Continuous Integration and Deployment (CI/CD) using GitHub Actions
  • Deployment to AWS ECR and EC2

Project Organization

├── LICENSE            <- Open-source license if one is chosen
├── Makefile           <- Makefile with convenience commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default mkdocs project; see mkdocs.org for details
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── pyproject.toml     <- Project configuration file with package metadata for src
│                         and configuration for tools like black
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.cfg          <- Configuration file for flake8
│
└── src                <- Source code for use in this project.
    │
    ├── __init__.py    <- Makes src a Python module
    │
    ├── data           <- Scripts to download or generate data
    │   └── make_dataset.py
    │
    ├── features       <- Scripts to turn raw data into features for modeling
    │   └── build_features.py
    │
    ├── models         <- Scripts to train models and then use trained models to make
    │   │                 predictions
    │   ├── predict_model.py
    │   └── train_model.py
    │
    └── visualization  <- Scripts to create exploratory and results oriented visualizations
        └── visualize.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published