Skip to content

SMLC-NYSBC/TARDIS

Repository files navigation

resources/Tardis_logo_2.png
https://img.shields.io/github/v/release/smlc-nysbc/tardis https://img.shields.io/badge/Join%20Our%20Community-Slack-blue https://img.shields.io/github/downloads/smlc-nysbc/tardis/total

Static Badge

Python-based software for generalized object instance segmentation from (cryo-)electron microscopy micrographs/tomograms. The software package is built on a general workflow where predicted semantic segmentation is used for instance segmentation of 2D/3D images.

resources/workflow.png

Features

  • Robust and high-throughput semantic/instance segmentation of all microtubules:
    • Supported file formats: [.tif, .mrc, .rec, .am]
    • Supported modality: [ET, Cryo-ET]
    • Supported Å resolution: [any best results in 1-40 Å range]
    • 2D micrograph modality microtubule segmentation will come soon!
  • Robust and high-throughput semantic/instance segmentation of membranes:
    • Supported file formats: [.tif, .mrc, .rec, .am]
    • Supported modality: [EM, ET, Cryo-EM, Cryo-ET]
    • Supported Å resolution: [all]
  • High-throughput semantic/instance segmentation of actin [Beta]
  • Fully automatic segmentation solution!
  • Napari plugin
  • Cloud computing [Coming soon]

Citation

DOI [Microscopy and Microanalysis]

Kiewisz R., Fabig G., Müller-Reichert T. Bepler T. 2023. Automated Segmentation of 3D Cytoskeletal Filaments from Electron Micrographs with TARDIS. Microscopy and Microanalysis 29(Supplement_1):970-972.

Link: NeurIPS 2022 MLSB Workshop

Kiewisz R., Bepler T. 2022. Membrane and microtubule rapid instance segmentation with dimensionless instance segmentation by learning graph representations of point clouds. Neurips 2022 - Machine Learning for Structural Biology Workshop.

What's new?

Full History

TARDIS-em v0.3.0 (2024-09-11):
  • Added general predictor for microtubule filaments from fluorescent microscopes [TIRF]
  • Added Napari plugin support for training, predictions and corrections of filaments instances

Quick Start

For more examples and advanced usage please find more details in our Documentation

  1. Install TARDIS-em:
pip install tardis-em

or

conda install tardis-em -c rrobert92 -c open3d-admin
  1. Verifies installation:
tardis
  1. Optional Napari plugin installation
pip install napari-tardis-em

Filaments Prediction

3D Actin prediction

Full tutorial: 3D Actin Prediction

Usage:
recommended usage: tardis_actin [-dir path/to/folder/with/input/tomogram]
advance usage: tardis_actin [-dir str] [-out str] [-ps int] [-ct float] [-dt float]
                         [-pv int] [-px float] ...

2D Microtubule prediction

TBD

3D Microtubule prediction

Full tutorial: 3D Microtubules Prediction

Example:

resources/3d_mt.jpg

Data source: Dr. Gunar Fabig and Prof. Dr. Thomas Müller-Reichert, TU Dresden

Usage:
recommended usage: tardis_mt [-dir path/to/folder/with/input/tomogram]
advance usage: tardis_mt [-dir str] [-out str] [-ps int] [-ct float] [-dt float]
                         [-pv int] [-px float] ...

TIRF Microtubule prediction

Full tutorial: TIRF Microtubules Prediction

Example:

resources/tirf_mt.png

Data source: RNDr. Cyril Bařinka, Ph.D, Biocev

Usage:
recommended usage: tardis_mt_tirf [-dir path/to/folder/with/input/data]
advance usage: tardis_mt [-dir str] [-out str] [-ps int] [-ct float] [-dt float]
                         [-pv int] ...

Membrane Prediction

2D prediction

Full tutorial: 2D Membrane Prediction

Example:

resources/2d_mem.jpg

Data source: Dr. Victor Kostyuchenko and Prof. Dr. Shee-Mei Lok, DUKE-NUS Medical School Singapore

Usage:
recommended usage: tardis_mem2d [-dir path/to/folder/with/input/tomogram] -out mrc_csv
advance usage: tardis_mem [-dir str] [-out str] [-ps int] ...

3D prediction

Full tutorial: 3D Membrane Prediction

Example:

resources/3d_mem.jpg

Data source: EMPIRE-10236, DOI: 10.1038/s41586-019-1089-3

Usage:
recommended usage: tardis_mem [-dir path/to/folder/with/input/tomogram] -out mrc_csv
advance usage: tardis_mem [-dir str] [-out str] [-ps int] ...