Skip to content

SModelS/smodels.github.io

Repository files navigation

banner

A tool for interpreting simplified-model results from the LHC

Mohammad Mahdi Altakach, Sabine Kraml, Andre Lessa, Sahana Narasimha, Timothée Pascal, Camila Ramos, Humberto Reyes-González, Théo Reymermier, Yoxara Villamizar, Wolfgang Waltenberger

Previously involved in SModelS: Gaël Alguero, Federico Ambrogi, Jan Heisig, Charanjit K. Khosa, Juhi Dutta, Suchita Kulkarni, Ursula Laa, Veronika Magerl, Wolfgang Magerl, Philipp Neuhuber, Doris Proschofsky, Jory Sonneveld, Michael Traub, Matthias Wolf, Alicia Wongel


GitHub Project PyPI version

Docs


31 Oct 2024: SModelS version 3.0.1 available (what's new)

20 Aug 2024: SModelS version 3.0.0 available (what's new)

  • Paper for version 3.0: arXiv:2409.12942
  • New graph-based topology description now allows SModelS to handle arbitrary simplified model topologies, without the need of an imposed Z2 symmetry.
  • Important database update with several non-Z2 signatures (resonances, monojet, RPV)

Mailing lists:


If you use SModelS, please cite the following papers:

  • SModelS v3: going beyond Z2 topologies, Mohammad Mahdi Altakach, Sabine Kraml, Andre Lessa, Sahana Narasimha, Timothée Pascal, Camila Ramos, Yoxara Villamizar, Wolfgang Waltenberger, arXiv:2409.12942 JHEP 11 (2024) 074
  • SModelS v2.3: enabling global likelihood analyses, Mohammad Mahdi Altakach, Sabine Kraml, Andre Lessa, Sahana Narasimha, Timothée Pascal, Wolfgang Waltenberger, arXiv:2306.17676, SciPost Phys. 16 (2024) 101
  • Constraining new physics with SModelS version 2, Gael Alguero, Jan Heisig, Charanjit Khosa, Sabine Kraml, Suchita Kulkarni, Andre Lessa, Humberto Reyes-Gonzalez, Wolfgang Waltenberger, Alicia Wongel, arXiv:2112.00769, JHEP 08 (2022) 068
  • A SModelS interface for pyhf likelihoods, Gael Alguero, Sabine Kraml, Wolfgang Waltenberger, arXiv:2009.01809, CPC March 2021, 107909
  • SModelS database update v1.2.3, Charanjit K. Khosa, Sabine Kraml, Andre Lessa, Philipp Neuhuber, Wolfgang Waltenberger, arXiv:2005.00555, LHEP 158 2020
  • SModelS v1.2: long-lived particles, combination of signal regions, and other novelties, Federico Ambrogi et al., arXiv:1811.10624, CPC 251, June 2020, 106848
  • Constraining new physics with searches for long-lived particles: Implementation into SModelS, Jan Heisig, Sabine Kraml, Andre Lessa, arXiv:1808.05229, Phys.Lett. B788 (2019) 87-95.
  • SModelS extension with the CMS supersymmetry search results from Run 2, Juhi Dutta, Sabine Kraml, Andre Lessa, Wolfgang Waltenberger, arXiv:1803.02204, LHEP 1 (2018) no.1,5-12
  • SModelS v1.1 user manual: improving simplified model constraints with efficiency maps, Federico Ambrogi, Sabine Kraml, Suchita Kulkarni, Ursula Laa, Andre Lessa, Veronika Magerl, Jory Sonneveld, Michael Traub, Wolfgang Waltenberger arXiv:1701.06586, CPC 227 (2018) 72-98
  • SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry, Sabine Kraml, Suchita Kulkarni, Ursula Laa, Andre Lessa, Wolfgang Magerl, Doris Proschofsky, Wolfgang Waltenberger, arXiv:1312.4175, EPJC (2014) 74:2868

Moreover

  • If you use the cross section calculator please cite Pythia and NLLfast
  • If you use the Fastlim results in the database, please cite Fastlim 1.0 arXiv:1402.40492v1, EPJC74 (2014) 11.

For convenience a references.bib file containing all relevant references is provided with the code. Likewise, a database.bib file with references to all the ATLAS and CMS analyses used is provided in the text database.

Working principle

SModelS is an automatic, public tool for interpreting simplified-model results from the LHC. It is based on a general procedure to decompose Beyond the Standard Model (BSM) collider signatures into Simplified Model Spectrum (SMS) topologies. Our method provides a way to cast BSM predictions for the LHC in a model independent framework, which can be directly confronted with the relevant experimental constraints. The main SModelS ingredients are

  • the decomposition of the BSM spectrum into SMS topologies
  • a database of experimental SMS results
  • matching between the decomposition and results database, including the tools to perform various kinds of statistical inference

as illustrated in the scheme below.

Code and Database updates

  • For code and database releases, see Download

Experimental results in the database

Publications and Talks

See the publications and talks page