Skip to content

SantanderMetGroup/downscalingPortalLoadeR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 

Repository files navigation

downscalingPortal

Here you can find some examples of the analysis of the downscaled data.

loadDownscaling.R

The loadDownscaling.R function allows you to read .csv files produced in the portal.

source('/the/directory/where/you/have/the/script/loadDownscaling.R')
downscaling <- loadDownscaling('yourDownscaling.csv')
# display the structure
str(downscaling)

This data frame contains the dates in the first column and the downscaled values for different stations in the following ones.

data<-downscaling[[2]]
dates<-downscaling[[1]]

Plot a histogram and compute basic statistics

hist(data)
mean(data,na.rm=TRUE)
sd(data)
quantile(data, c(.9,.95,.99))
summary(data)

Time series calculations with zoo package

install.packages("zoo")
require(zoo)

Plot some time series

# original series
series <- zoo(downscaling[[2]], downscaling[[1]])
plot(series)

# Now we are going to aggregate the data at different temporal resolutions using the mean and the 95th percentile.
# First we define the aggregation functions that ignore missing values

namean<- function(x){
  mean(x,na.rm = TRUE)
}
p95<- function(x){
  quantile(x,.95,na.rm = TRUE)
}

# plot the monthly mean aggregated data
seriesmmean <- aggregate(series, as.Date(as.yearmon(time(series))), namean)
plot(seriesmmean)

# plot the yearly mean aggregated data
as.year <- function(x){
  as.Date(cut(x, 'year'))
}
seriesymean <- aggregate(series, as.Date(as.year(time(series))), namean)
plot(seriesymean)

# plot the seasonally aggregated data
as.season <- function(oDates){
  unlist(lapply(oDates, function(oDate) {
    monthDate <- cut(oDate, 'month')
    month <- as.numeric(format(oDate, "%m"))
    year <- as.numeric(format(oDate, "%Y"))
    if(month <= 2) return(as.Date(paste(year - 1, '-12-1', sep="")))
    if(month <= 5) return(as.Date(paste(year, '-3-1', sep="")))
    if(month <= 8) return(as.Date(paste(year, '-6-1', sep="")))
    if(month <= 11) return(as.Date(paste(year, '-9-1', sep="")))
    return(as.Date(paste(year, '-12-1', sep="")))
  }))
}
seriesSeasmean <- aggregate(series, as.Date(as.season(time(series))), namean)
plot(seriesSeasmean)


# plot the monthly 95th percentile aggregated data
seriesmmean95p <- aggregate(series, as.Date(as.yearmon(time(series))), p95)
plot(seriesmmean95p)

# plot the yearly 95th percentile aggregated data
seriesymean95p <- aggregate(series, as.Date(as.year(time(series))), p95)
plot(seriesymean95p)

# plot the seasonally 95th percentile aggregated data
seriesSeasmean95p <- aggregate(series, as.Date(as.season(time(series))), p95)
plot(seriesSeasmean95p)

Fit the data to a GEV distribution

We are going to fit our data to a GEV distribution using the block maxima approach

install.packages("ismev")
require(ismev)

We define a function that computes the maximum value ignoring the missing data

namax<- function(x){
  max(x,na.rm = TRUE)
}

We aggregate the data as in the previous section but now selecting the maximum

# For the monthly data
seriesMonMax <- aggregate(series, as.Date(as.yearmon(time(series))), namax)

# And for the seasonal data
seriesSeasMax <- aggregate(series, as.Date(as.season(time(series))), namax)

In this example we want to fit winter (DJF) maxima values to a GEV distribution, using the monthly and the seasonally aggregated data for the comparison of different block lengths:

# Extract DJF from the monthly data
month <- as.numeric(format(time(seriesMonMax), "%m"))
indDJF <- which(month=="1" | month=="2" | month=="12")
seriesMonMaxDJF <- seriesMonMax[indDJF]

# Extract DJF from the seasonal data
month <- as.numeric(format(time(seriesSeasMax), "%m"))
indDJF <- which(month=="12")
seriesSeasMaxDJF <- seriesSeasMax[indDJF]

Finally, we fit our data to a stationary GEV distribution

gevMonDJF <- gev.fit(seriesMonMaxDJF)
gevSeasDJF <- gev.fit(seriesSeasMaxDJF)

# Diagnostic plots
gev.diag(gevMonDJF)
gev.diag(gevSeasDJF)

About

Auxiliary functions (R) for the statistical downscaling portal

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages