Skip to content

SergiSalido/NEC_A3_Unsupervised-learning-with-PCA-t-SNE-k-means-AHC-and-SOM

Repository files navigation

A3: Unsupervised learning with PCA, t-SNE, k-means, AHC and SOM

Datasets (input)

The unsupervised learning techniques are applied on two datasets:

  1. A3-data.txt
  2. Wine.txt

Principal Component Analysis (PCA)

Source code of PCA:

  1. PCA_d1.ipynb
  2. PCA_d2.ipynb

t-distributed Neighbor Stochastic Embedding (t-SNE)

Source code of t-SNE:

  1. t-SNE_d1.ipynb
  2. t-SNE_d2.ipynb

k-means

Source code of k-means:

  1. k-means_d1.ipynb
  2. k-means_d2.ipynb

Agglomerative Hierarchical Clustering (AHC)

Source code of AHC:

  1. AHC_d1.ipynb
  2. AHC_d2.ipynb

Self-Organizing Maps (SOM)

Source code of SOM:

  1. SOM_d1.ipynb
  2. SOM_d2.ipynb

Documentation