A3: Unsupervised learning with PCA, t-SNE, k-means, AHC and SOM Datasets (input) The unsupervised learning techniques are applied on two datasets: A3-data.txt Wine.txt Principal Component Analysis (PCA) Source code of PCA: PCA_d1.ipynb PCA_d2.ipynb t-distributed Neighbor Stochastic Embedding (t-SNE) Source code of t-SNE: t-SNE_d1.ipynb t-SNE_d2.ipynb k-means Source code of k-means: k-means_d1.ipynb k-means_d2.ipynb Agglomerative Hierarchical Clustering (AHC) Source code of AHC: AHC_d1.ipynb AHC_d2.ipynb Self-Organizing Maps (SOM) Source code of SOM: SOM_d1.ipynb SOM_d2.ipynb Documentation A3_report.pdf