Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MotionEstimationStudy : plot drift with the scatter plot #3553

Merged
merged 3 commits into from
Jan 8, 2025
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
plot drift with the scatter plot
  • Loading branch information
samuelgarcia committed Nov 27, 2024
commit 2cff62babd7816c14fef9246152b53a2bb59d991
14 changes: 13 additions & 1 deletion src/spikeinterface/benchmark/benchmark_motion_estimation.py
Original file line number Diff line number Diff line change
@@ -109,6 +109,9 @@ def run(self, **job_kwargs):
estimate_motion=t4 - t3,
)


self.result["peaks"] = peaks
self.result["peak_locations"] = peak_locations
self.result["step_run_times"] = step_run_times
self.result["raw_motion"] = motion

@@ -131,6 +134,8 @@ def compute_result(self, **result_params):
self.result["motion"] = motion

_run_key_saved = [
("peaks", "npy"),
("peak_locations", "npy"),
("raw_motion", "Motion"),
("step_run_times", "pickle"),
]
@@ -161,7 +166,7 @@ def create_benchmark(self, key):
def plot_true_drift(self, case_keys=None, scaling_probe=1.5, figsize=(8, 6)):
self.plot_drift(case_keys=case_keys, tested_drift=False, scaling_probe=scaling_probe, figsize=figsize)

def plot_drift(self, case_keys=None, gt_drift=True, tested_drift=True, scaling_probe=1.0, figsize=(8, 6)):
def plot_drift(self, case_keys=None, gt_drift=True, tested_drift=True, raster=False, scaling_probe=1.0, figsize=(8, 6)):
import matplotlib.pyplot as plt

if case_keys is None:
@@ -195,6 +200,13 @@ def plot_drift(self, case_keys=None, gt_drift=True, tested_drift=True, scaling_p

# for i in range(self.gt_unit_positions.shape[1]):
# ax.plot(temporal_bins_s, self.gt_unit_positions[:, i], alpha=0.5, ls="--", c="0.5")
if raster:
peaks = bench.result["peaks"]
peak_locations = bench.result["peak_locations"]
rec = bench.recording
x = peaks["sample_index"] / rec.sampling_frequency
y = peak_locations[bench.direction]
ax.scatter(x, y, alpha=.2, s=2, c=np.abs(peaks["amplitude"]), cmap="inferno")

for i in range(gt_motion.displacement[0].shape[1]):
depth = motion.spatial_bins_um[i]
Loading