Skip to content

Commit

Permalink
Update docs
Browse files Browse the repository at this point in the history
  • Loading branch information
kbarros committed Dec 30, 2022
1 parent 7e14a1a commit 720e0b6
Show file tree
Hide file tree
Showing 3 changed files with 218 additions and 69 deletions.
220 changes: 158 additions & 62 deletions docs/math/ewald_review.lyx
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@ where
\end_inset

is the vacuum permittivity.
The factor of 1/2 counteracts double counting over ion pairs,
The factor of 1/2 undoes double counting over ion pairs,
\begin_inset Formula $i$
\end_inset

Expand Down Expand Up @@ -232,7 +232,7 @@ noprefix "false"
\end_inset

can effectively be approximated as an integral,
\begin_inset Formula $\sum_{\mathbf{n}}(\cdot)\rightarrow\int_{\mathbb{R}^{3}}(\cdot)r^{2}d\mathbf{r}$
\begin_inset Formula $\sum_{\mathbf{n}}(\cdot)\rightarrow\int_{\mathbb{R}^{3}}(\cdot)r^{2}dr$
\end_inset

.
Expand Down Expand Up @@ -262,8 +262,8 @@ noprefix "false"

.
Any real material sample will have finite volume, and the conditional convergen
ce highlights the importance of surface boundary effects, e.g., the geometry
of the finite sample.
ce highlights the importance of surface effects, such as the geometry of
the finite sample.
\end_layout

\begin_layout Standard
Expand Down Expand Up @@ -337,8 +337,7 @@ and
\begin_inset Formula $\sigma$
\end_inset

is a tuneable parameter, and will eventually be adjusted to optimize numerical
efficiency.
is a tuneable parameter that can be adjusted to optimize numerical efficiency.
\end_layout

\begin_layout Standard
Expand Down Expand Up @@ -681,7 +680,7 @@ with
\begin{align}
E_{L} & =\frac{1}{2}\sum_{i,\mathbf{n}}q_{i}\phi_{i}^{L}\label{eq:EL_phi}\\
E_{S} & =\frac{1}{4\pi\epsilon_{0}}\frac{1}{2}\sideset{}{^{\prime}}\sum_{i,j,\mathbf{n}}\frac{q_{i}q_{j}}{r_{ij\mathbf{n}}}\mathrm{erfc}\left(\frac{r_{ij\mathbf{n}}}{\sqrt{2}\,\sigma}\right)\\
E_{\mathrm{self}} & =\frac{1}{4\pi\epsilon_{0}}\frac{1}{\sqrt{2\pi}\,\sigma}\sum_{i}q_{i}^{2}.
E_{\mathrm{self}} & =\frac{1}{4\pi\epsilon_{0}}\frac{1}{\sqrt{2\pi}\,\sigma}\sum_{i}q_{i}^{2}.\label{eq:E_self_0}
\end{align}

\end_inset
Expand Down Expand Up @@ -869,42 +868,27 @@ where
The sum on the right is over all wave vectors with appropriate periodicity,
i.e.

\begin_inset Formula $k_{\alpha}=2\pi n_{\alpha}/L$
\begin_inset Formula $k_{\alpha}=2\pi m_{\alpha}/L$
\end_inset

for integer
\begin_inset Formula $n_{\alpha}$
\begin_inset Formula $m_{\alpha}$
\end_inset

.
Charge neutrality implies
\begin_inset Formula $\hat{\rho}(\mathbf{0})=\sum_{j}q_{i}=0$
\end_inset

, and it is reasonable to also impose
\begin_inset Formula $\hat{\phi}^{L}(\mathbf{0})=\sum_{i}\phi(\mathbf{r}_{i})=0$
\end_inset

on the solution of Eq.
\begin_inset space ~
\end_inset


\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:poisson_phi_L"
plural "false"
caps "false"
noprefix "false"

, which allows to exclude
\begin_inset Formula $\mathbf{k}=\mathbf{0}$
\end_inset

.
This choice justifies excluding
\begin_inset Formula $\mathbf{k}=\mathbf{0}$
from the Fourier space sums, provided the reasonable assumption that
\begin_inset Formula $\hat{\phi}^{L}(\mathbf{0})=\sum_{i}\phi(\mathbf{r}_{i})$
\end_inset

from the Fourier space sums.
is finite.
\end_layout

\begin_layout Standard
Expand Down Expand Up @@ -992,7 +976,7 @@ involving the Fourier transform of charge density,
Finally, one must subtract the self-energy,
\begin_inset Formula
\begin{equation}
E_{\mathrm{self}}=\frac{1}{4\pi\epsilon_{0}}\frac{1}{\sqrt{2\pi}\,\sigma}\sum_{i}q_{i}^{2}.
E_{\mathrm{self}}=\frac{1}{4\pi\epsilon_{0}}\frac{1}{\sqrt{2\pi}\,\sigma}\sum_{i}q_{i}^{2}.\label{eq:E_self_again}
\end{equation}

\end_inset
Expand Down Expand Up @@ -1419,17 +1403,17 @@ where
\begin_inset Formula
\begin{align}
E_{\mathrm{dd}} & =\frac{(-\mathbf{p}_{i}\cdot\nabla_{i})(-\mathbf{p}_{j}\cdot\nabla_{j})}{4\pi\epsilon_{0}}\frac{1}{r_{ij}}\nonumber \\
& =\frac{1}{4\pi\epsilon_{0}}\left[\frac{\mathbf{p}_{i}\cdot\mathbf{p}_{j}-3(\mathbf{p}_{j}\cdot\hat{\mathbf{r}}_{ij})(\mathbf{p}_{i}\cdot\hat{\mathbf{r}}_{ij})}{r_{ij}^{3}}\right]+\cancel{\delta(\mathbf{r}_{ij})\frac{\mathbf{p}_{i}\cdot\mathbf{p}_{j}}{3\epsilon_{0}}}.
& =\frac{1}{4\pi\epsilon_{0}}\left[\frac{\mathbf{p}_{i}\cdot\mathbf{p}_{j}-3(\mathbf{p}_{j}\cdot\hat{\mathbf{r}}_{ij})(\mathbf{p}_{i}\cdot\hat{\mathbf{r}}_{ij})}{r_{ij}^{3}}\right]+\cancel{\delta(\mathbf{r}_{ij})\frac{\mathbf{p}_{i}\cdot\mathbf{p}_{j}}{3\epsilon_{0}}}.\label{eq:E_dd}
\end{align}

\end_inset

The first term is recognized as the usual dipole-dipole energy.
The second term disappears when
The second term can be ignored because we will always take
\begin_inset Formula $\mathbf{r}_{i}\neq\mathbf{r}_{j}$
\end_inset

, as we will assume.
.
\end_layout

\begin_layout Standard
Expand Down Expand Up @@ -1485,7 +1469,7 @@ noprefix "false"
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:rho_k_again"
reference "eq:E_self_again"
plural "false"
caps "false"
noprefix "false"
Expand Down Expand Up @@ -1628,7 +1612,7 @@ noprefix "false"

\end_inset

involve the Fourier transform of the Dirac charge distribution, Eq.
involve the Fourier transform of the charge density, Eq.
\begin_inset space ~
\end_inset

Expand Down Expand Up @@ -1720,45 +1704,156 @@ Self-energy
\end_layout

\begin_layout Standard
The above procedure introduces an unphysical dipole self-interaction in
Fourier space.
To correct for this, the self-energy must include an additional term,
Recall that the Gaussian charge cloud self interactions
\begin_inset Formula $E_{\mathrm{self}}$
\end_inset

were added to the long-range energy
\begin_inset Formula $E_{L}$
\end_inset

and then subtracted.
The original form
\end_layout

\begin_layout Standard
\begin_inset Formula
\begin{equation}
E_{\mathrm{self}}=\frac{1}{4\pi\epsilon_{0}}\left(\frac{1}{\sqrt{2\pi}\,\sigma}\sum_{i}q_{i}^{2}+\frac{1}{3}\frac{1}{\sqrt{2\pi}\,\sigma^{3}}\sum_{i}p_{i}^{2}\right).
\end{equation}
\begin{align*}
E_{\mathrm{self}} & =\frac{1}{4\pi\epsilon_{0}}\frac{1}{2}\sum_{i,j}\delta_{ij}q_{i}q_{j}\frac{1}{r_{ij\mathbf{0}}}\mathrm{erf}\left(\frac{r_{ij\mathbf{0}}}{\sqrt{2}\,\sigma}\right),
\end{align*}

\end_inset

simplifies to Eq.
\begin_inset space ~
\end_inset


\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:E_self_0"
plural "false"
caps "false"
noprefix "false"

\end_inset

.
When introducing dipoles, the substitution procedure of Eq.
\begin_inset space ~
\end_inset


\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:subs"
plural "false"
caps "false"
noprefix "false"

\end_inset

must be applied to
\begin_inset Formula $E_{\mathrm{self}}$
\end_inset

just as it was to
\begin_inset Formula $E_{\mathrm{L}}$
\end_inset

\color red
TODO: DERIVE THIS.
A modern reference is
\begin_inset Flex URL
.
The result is
\begin_inset Formula
\begin{align}
E_{\mathrm{self}} & =\frac{1}{4\pi\epsilon_{0}}\frac{1}{2}\sum_{i,j}\delta_{ij}\biggl[q_{i}q_{j}\frac{1}{r}\mathrm{erf}\left(\frac{r}{\sqrt{2}\,\sigma}\right)\nonumber \\
& \quad+(q_{i}\mathbf{p}_{j}-q_{j}\mathbf{p}_{i})\cdot\nabla\frac{1}{r}\mathrm{erf}\left(\frac{r}{\sqrt{2}\,\sigma}\right)\nonumber \\
& \quad-(\mathbf{p}_{i}\cdot\nabla)(\mathbf{p}_{j}\cdot\nabla)\frac{1}{r}\mathrm{erf}\left(\frac{r}{\sqrt{2}\,\sigma}\right)\biggr],
\end{align}

\end_inset

to be evaluated in the limit
\begin_inset Formula $r\rightarrow0$
\end_inset

where
\begin_inset Formula $r=r_{ij}$
\end_inset

and
\begin_inset Formula $\nabla r=\nabla_{j}r_{ij}=-\nabla_{i}r_{ij}$
\end_inset

.
The first term reproduces Eq.
\begin_inset space ~
\end_inset


\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:E_self_0"
plural "false"
caps "false"
noprefix "false"

\end_inset

.
The second term is zero by symmetry.
The third term can be evaluated using the identities,
\begin_inset Formula
\begin{align}
\frac{1}{r}\mathrm{erf}\left(\frac{r}{\sqrt{2}\,\sigma}\right) & =\sqrt{\frac{2}{\pi}}\,\sigma-\frac{r^{2}}{3\sqrt{2\pi}\,\sigma^{3}}+\mathcal{O}(r^{4}),\\
\frac{1}{2}(\mathbf{p}_{i}\cdot\nabla)(\mathbf{p}_{i}\cdot\nabla)r^{2} & =p_{i}^{2}.
\end{align}

\end_inset

The final result is
\end_layout

\begin_layout Standard
\begin_inset Box Boxed
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
use_makebox 0
width "100col%"
special "none"
height "1in"
height_special "totalheight"
thickness "0.4pt"
separation "3pt"
shadowsize "4pt"
framecolor "black"
backgroundcolor "none"
status open

\begin_layout Plain Layout
\begin_inset Formula
\begin{equation}
E_{\mathrm{self}}=\frac{1}{4\pi\epsilon_{0}}\left(\frac{1}{\sqrt{2\pi}\,\sigma}\sum_{i}q_{i}^{2}+\frac{1}{3}\frac{1}{\sqrt{2\pi}\,\sigma^{3}}\sum_{i}p_{i}^{2}\right).
\end{equation}

\end_inset


https://doi.org/10.1063/1.481216
\end_layout

\end_inset

.
Rappaport book also includes this term, and its references go back to de
Leeuw, e.g.
Proc.
Roy.
Soc.
Lond.
A 373, 57-66 (1980).
\end_layout

\begin_inset Note Comment
status open

\begin_layout Section
Effective pair interactions
\end_layout

\begin_layout Standard
\begin_layout Plain Layout
In the context of simulating model lattice systems, Ewald can be used to
precompute the effective interaction between two sites, accounting for
all periodic images.
Expand Down Expand Up @@ -1791,7 +1886,7 @@ noprefix "false"
.
\end_layout

\begin_layout Standard
\begin_layout Plain Layout
Consider, for simplicity, an ordered pair of dipoles
\series bold

Expand All @@ -1802,17 +1897,13 @@ Consider, for simplicity, an ordered pair of dipoles
\series default
and
\begin_inset Formula $\mathbf{p}_{j}$
\end_inset

with
\begin_inset Formula $i\neq j$
\end_inset

.
The energy for this periodic, pairwise interaction is
\begin_inset Formula
\begin{equation}
E_{ij}=\frac{1}{4\pi\epsilon_{0}}\mathbf{p}_{i}\cdot\left[\frac{4\pi}{2V}\sum_{\mathbf{k}\neq\mathbf{0}}\frac{e^{-\sigma^{2}k^{2}/2}}{k^{2}}(\mathbf{k}\otimes\mathbf{k})e^{-i\mathbf{k}\cdot\mathbf{r}_{ij}}+\sum_{\mathbf{n}}\overleftrightarrow{\mathcal{E}}_{\mathrm{dd}}(\mathbf{r}_{ij\mathbf{n}})\right]\cdot\mathbf{p}_{j},
E_{ij}=\frac{1}{4\pi\epsilon_{0}}\frac{1}{2}\mathbf{p}_{i}\cdot\left[\frac{4\pi}{V}\sum_{\mathbf{k}\neq\mathbf{0}}\frac{e^{-\sigma^{2}k^{2}/2}}{k^{2}}(\mathbf{k}\otimes\mathbf{k})e^{-i\mathbf{k}\cdot\mathbf{r}_{ij}}+\sideset{}{^{'}}\sum_{\mathbf{n}}\overleftrightarrow{\mathcal{E}}_{\mathrm{dd}}(\mathbf{r}_{ij\mathbf{n}})+\frac{2\delta_{ij}}{3\sigma^{3}}\sqrt{\frac{1}{2\pi}}\,I\right]\cdot\mathbf{p}_{j},
\end{equation}

\end_inset
Expand Down Expand Up @@ -1848,5 +1939,10 @@ noprefix "false"
Similar formulas hold for charge-charge and charge-dipole interactions.
\end_layout

\end_inset


\end_layout

\end_body
\end_document
Binary file modified docs/math/ewald_review.pdf
Binary file not shown.
Loading

0 comments on commit 720e0b6

Please sign in to comment.