Skip to content

TCvanLeth/ScatterPy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python module to calculate scattering amplitude and phase matrices of rotationally symmetric particles based on the T-matrix method.

Based on the original Fortran T-matrix code by M.I. Mishchenko. (https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html). Includes orientation averaging schemes adapted from J. Leinonen (https://github.com/jleinonen/pytmatrix).

This is a pure Python reimplementation of the original routines using NumPy, not a Python wrapper around the Fortran code.

Currently spheroids, Chebyshev shapes and generalized chebyshev shapes are implemented. Also includes several empirical raindrop shapes.

Download and install with pip: pip install scatterpy

Examples of use

Single generalized Chebyshev particle:

import numpy as np
from scatterpy import *

radius = np.asarray([5., 6.])  # equivalent sphere radius (meter)
wl = 3.1415925  # wavelength of incident light (same unit as radius)
mr = np.asarray([1.5+0.02j, 1.8+0.02j])  # refractive index

alpha = np.asarray([np.deg2rad(145)]) # Drop canting euler angle in rad (rotation around z axis).
beta = np.asarray([np.deg2rad(52)]) # # Drop canting euler angle in rad (rotation around x' axis).
theta0 = np.asarray([np.deg2rad(56), np.deg2rad(60)]) # incomming beam zenith angle
theta = np.asarray([np.deg2rad(65), np.deg2rad(70)]) # outgoing beam zenith angle
phi0 = np.asarray([np.deg2rad(114), np.deg2rad(120)]) # incoming beam azimuth angle
phi = np.asarray([np.deg2rad(128), np.deg2rad(130)]) # outgoing beam azimuth angle

sfunc = lambda x: shapes.gen_chebyshev(np.array([-0.0481, 0.0359, -0.1263, 0.0244,
                                                  0.0091, -0.0099, 0.0015, 0.0025,
                                                 -0.0016, -0.0002, 0.0010]))
T = calc_T(radius*2, wl, mr, rtol=0.001)
S = calc_S(T, theta0, theta, phi0, phi, alpha, beta)
Z = calc_Z(S)
print(S)

Orientation averaged raindrops:

import numpy as np
from scatterpy import *

attrs = {'quantity':'diameter', 'unit':'m'}
D = np.arange(4e-3, 5e-3, 1e-4) # equivalent sphere diameter

wl = np.arange(8e-3, 9.1e-3, 1e-4)

wl = 8E-3  # wavelength of incident light (same unit as radius)
mr = np.asarray([1.5+0.02j])  # refractive index

sfunc = shapes.dropshape_CB90
wfunc = sph_gauss_pdf()

theta0 = np.deg2rad(56) # incomming beam zenith angle
theta = np.deg2rad(65) # outgoing beam zenith angle
phi0 = np.deg2rad(114) # incoming beam azimuth angle
phi = np.deg2rad(128) # outgoing beam azimuth angle

T = calc_T(D, wl, mr, sfunc=sfunc)
S, Z = calc_SZ_oa(T, theta0, theta, phi0, phi, wfunc)
S *= wl / (2 * np.pi)
print(S)

To evaluate the empirical raindrop shapes:

D = np.asarray([2e-3, 4e-3])
shape = dropshape_CB90(D)
cheb = shape(np.polynomial.legendre.leggauss(100)[0])
print(cheb)

About

T-matrix electromagnetic scattering simulations

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages