Skip to content

TejasNaikk/Question-Answering-QANet

Repository files navigation

QUESTION ANSWERING USING MODIFIED QANET

  1. A Tensorflow implementation of Google's QANet (Note: This is not an official implementation from the authors of the paper)

    Unofficial Implementation source: https://github.com/NLPLearn/QANet

  2. List of modified files: a) prepro.py : Functions modified - get_embedding(),build_features() Functions created - get_POS_one_hot_vector()

    b) model.py : Functions modified - forward()

    c) layers.py : Functions created - drnn(), bidirlstm(), bidirectional_dynamic_rnn()

    d) demo.py : Functions modified - answer()

    e) config.py : Tuned hyperparameters

  3. List of commands:

To download and preprocess the data, run

download SQuAD and Glove

a) sh download.sh

preprocess the data

b) python config.py --mode prepro

hyper parameters are stored in config.py. To debug/train/test/demo, run

c) python config.py --mode debug/train/test/demo

d) The default directory for the tensorboard log file is train/{model_name}/event

Tensorboard

Run tensorboard for visualisation.

$ tensorboard --logdir=./

  1. List of requirements:
  • Python>=2.7
  • NumPy
  • tqdm
  • TensorFlow>=1.5
  • spacy==2.0.9
  • bottle (only for demo)
  • Cuda 10

Dataset

The dataset used for this task is Stanford Question Answering Dataset. Pretrained GloVe embeddings obtained from common crawl with 840B tokens used for words.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published