Skip to content

Commit

Permalink
fix Raman gain estimation during design
Browse files Browse the repository at this point in the history
- Replaced multiple calls to the span_loss function
  with recording the span loss result in the fiber elements,
  reducing computation time.
- Updated Raman gain estimation based on design target powers to ensure
  accurate Edfa gain calculation or gain reduction during design.
- display the computed and design Raman gain in RamanFiber string output
- do not add padding on Raman fibers
- Added to_json function to preserve user input SimParams values,
  which were previously overwritten by initializing SimParams
  with fake values during design.

Next step is to allow users to balance computation time and
target accuracy of the design by inputing their own SimParams
and ref channels design values.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I1ca4954d0621858cefb3d776a538131992cae3e3
  • Loading branch information
EstherLerouzic committed Apr 12, 2024
1 parent 426c884 commit 2b4a4ab
Show file tree
Hide file tree
Showing 4 changed files with 167 additions and 132 deletions.
8 changes: 7 additions & 1 deletion gnpy/core/elements.py
Original file line number Diff line number Diff line change
Expand Up @@ -242,7 +242,6 @@ def __init__(self, *args, params=None, **kwargs):
# on the path, since it depends on the equalization definition on the degree.
self.ref_pch_out_dbm = None
self.loss = 0 # auto-design interest

# Optical power of carriers are equalized by the ROADM, so that the experienced loss is not the same for
# different carriers. The ref_effective_loss records the loss for a reference carrier.
self.ref_effective_loss = None
Expand Down Expand Up @@ -707,11 +706,16 @@ def __init__(self, *args, params=None, **kwargs):
def to_json(self):
return dict(super().to_json, operational=self.operational)

def __str__(self):
return super().__str__() + f'\n reference gain (dB): {round(self.estimated_gain, 2)}' \
+ f'\n actual gain (dB): {round(self.actual_raman_gain, 2)}'

def propagate(self, spectral_info: SpectralInformation):
"""Modifies the spectral information computing the attenuation, the non-linear interference generation,
the CD and PMD accumulation.
"""
# apply the attenuation due to the input connector loss
pin = watt2dbm(sum(spectral_info.signal))
attenuation_in_db = self.params.con_in + self.params.att_in
spectral_info.apply_attenuation_db(attenuation_in_db)

Expand Down Expand Up @@ -741,6 +745,8 @@ def propagate(self, spectral_info: SpectralInformation):
spectral_info.apply_attenuation_db(attenuation_out_db)
self.pch_out_dbm = watt2dbm(spectral_info.signal + spectral_info.nli + spectral_info.ase)
self.propagated_labels = spectral_info.label
pout = watt2dbm(sum(spectral_info.signal))
self.actual_raman_gain = self.loss + pout - pin


class Edfa(_Node):
Expand Down
106 changes: 61 additions & 45 deletions gnpy/core/network.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
from gnpy.core.info import ReferenceCarrier, create_input_spectral_information
from gnpy.tools import json_io
from gnpy.core.parameters import SimParams
from gnpy.core.science_utils import RamanSolver


logger = getLogger(__name__)
Expand Down Expand Up @@ -141,7 +142,6 @@ def target_power(network, node, equipment): # get_fiber_dp
POWER_SLOPE = 0.3
dp_range = list(equipment['Span']['default'].delta_power_range_db)
node_loss = span_loss(network, node, equipment)

try:
dp = round2float((node_loss - SPAN_LOSS_REF) * POWER_SLOPE, dp_range[2])
dp = max(dp_range[0], dp)
Expand Down Expand Up @@ -187,63 +187,73 @@ def next_node_generator(network, node):
yield from next_node_generator(network, next_node)


def estimate_raman_gain(node, equipment):
def estimate_raman_gain(node, equipment, power_dbm):
"""If node is RamanFiber, then estimate the possible Raman gain if any
for this purpose propagate a fake signal in a copy.
to be accurate the nb of channel should be the same as in SI, but this increases computation time
for this purpose computes stimulated_raman_scattering loss_profile. This may be time consuming.
"""
f_min = equipment['SI']['default'].f_min
f_max = equipment['SI']['default'].f_max
roll_off = equipment['SI']['default'].roll_off
baud_rate = equipment['SI']['default'].baud_rate
power_dbm = equipment['SI']['default'].power_dbm
power = dbm2watt(equipment['SI']['default'].power_dbm)
spacing = equipment['SI']['default'].spacing
tx_osnr = equipment['SI']['default'].tx_osnr

sim_params = {
"raman_params": {
"flag": True,
"result_spatial_resolution": 10e3,
"solver_spatial_resolution": 50
},
"nli_params": {
"method": "ggn_spectrally_separated",
"dispersion_tolerance": 1,
"phase_shift_tolerance": 0.1,
"computed_channels": [1, 18, 37, 56, 75]
}
}
if isinstance(node, elements.RamanFiber):
if hasattr(node, "estimated_gain"):
return node.estimated_gain
f_min = equipment['SI']['default'].f_min
f_max = equipment['SI']['default'].f_max
roll_off = equipment['SI']['default'].roll_off
baud_rate = equipment['SI']['default'].baud_rate
power = dbm2watt(power_dbm)
spacing = equipment['SI']['default'].spacing
tx_osnr = equipment['SI']['default'].tx_osnr

# reduce the nb of channels to speed up
spacing = spacing * 3
power = power * 3

sim_params = {
"raman_params": {
"flag": True,
"result_spatial_resolution": 50e3,
"solver_spatial_resolution": 100
}
}

# in order to take into account gain generated in RamanFiber, propagate in the RamanFiber with
# SI reference channel.
spectral_info_input = create_input_spectral_information(f_min=f_min, f_max=f_max, roll_off=roll_off,
baud_rate=baud_rate, power=power, spacing=spacing,
tx_osnr=tx_osnr)
n_copy = deepcopy(node)
# need to set ref_pch_in_dbm in order to correctly run propagate of the element, because this
# setting has not yet been done by autodesign
n_copy.ref_pch_in_dbm = power_dbm
if hasattr(node, "estimated_gain"):
# do not compute twice to save on time
return node.estimated_gain
spectral_info = create_input_spectral_information(f_min=f_min, f_max=f_max, roll_off=roll_off,
baud_rate=baud_rate, power=power, spacing=spacing,
tx_osnr=tx_osnr)
pin = watt2dbm(sum(spectral_info.signal))
attenuation_in_db = node.params.con_in + node.params.att_in
spectral_info.apply_attenuation_db(attenuation_in_db)
save_sim_params = {"raman_params": SimParams._shared_dict['raman_params'].to_json(),
"nli_params": SimParams._shared_dict['nli_params'].to_json()}
SimParams.set_params(sim_params)
pin = watt2dbm(sum(spectral_info_input.signal))
spectral_info_out = n_copy(spectral_info_input)
pout = watt2dbm(sum(spectral_info_out.signal))
estimated_gain = pout - pin + node.loss
stimulated_raman_scattering = RamanSolver.calculate_stimulated_raman_scattering(spectral_info, node)
attenuation_fiber = stimulated_raman_scattering.loss_profile[:spectral_info.number_of_channels, -1]
spectral_info.apply_attenuation_lin(attenuation_fiber)
attenuation_out_db = node.params.con_out
spectral_info.apply_attenuation_db(attenuation_out_db)
pout = watt2dbm(sum(spectral_info.signal))
estimated_loss = pin - pout
estimated_gain = node.loss - estimated_loss
node.estimated_gain = estimated_gain
SimParams.set_params(save_sim_params)
return round(estimated_gain, 2)
else:
return 0.0


def span_loss(network, node, equipment):
"""Total loss of a span (Fiber and Fused nodes) which contains the given node"""
def span_loss(network, node, equipment, input_power=None):
"""Total loss of a span (Fiber and Fused nodes) which contains the given node
Do not recompute, if it was already computed: records it in design_span_loss"""
if hasattr(node, "design_span_loss"):
return node.design_span_loss
loss = node.loss if node.passive else 0
loss += sum(n.loss for n in prev_node_generator(network, node))
loss += sum(n.loss for n in next_node_generator(network, node))
# add the possible Raman gain
gain = estimate_raman_gain(node, equipment)
gain += sum(estimate_raman_gain(n, equipment) for n in prev_node_generator(network, node))
gain += sum(estimate_raman_gain(n, equipment) for n in next_node_generator(network, node))

gain = estimate_raman_gain(node, equipment, input_power)
gain += sum(estimate_raman_gain(n, equipment, input_power) for n in prev_node_generator(network, node))
gain += sum(estimate_raman_gain(n, equipment, input_power) for n in next_node_generator(network, node))
return loss - gain


Expand Down Expand Up @@ -399,7 +409,8 @@ def set_egress_amplifier(network, this_node, equipment, pref_ch_db, pref_total_d
node.target_pch_out_dbm = round(node.delta_p + pref_ch_db, 2)
elif node.delta_p is None:
node.target_pch_out_dbm = None

elif isinstance(node, elements.RamanFiber):
_ = span_loss(network, node, equipment, input_power=pref_ch_db + dp)
prev_dp = dp
prev_voa = voa
prev_node = node
Expand Down Expand Up @@ -701,7 +712,11 @@ def add_fiber_padding(network, fibers, padding, equipment):
next_node = get_next_node(fiber, network)
if isinstance(next_node, elements.Fused):
continue
# do not pad if this is a Raman Fiber
if isinstance(fiber, elements.RamanFiber):
continue
this_span_loss = span_loss(network, fiber, equipment)
fiber.design_span_loss = this_span_loss
if this_span_loss < padding:
# add a padding att_in at the input of the 1st fiber:
# address the case when several fibers are spliced together
Expand All @@ -710,6 +725,7 @@ def add_fiber_padding(network, fibers, padding, equipment):
# just after a roadm: need to check that first_fiber is really a fiber
if isinstance(first_fiber, elements.Fiber):
first_fiber.params.att_in = first_fiber.params.att_in + padding - this_span_loss
fiber.design_span_loss += first_fiber.params.att_in


def add_missing_elements_in_network(network, equipment):
Expand Down
11 changes: 11 additions & 0 deletions gnpy/core/parameters.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,11 @@ def __init__(self, flag=False, result_spatial_resolution=10e3, solver_spatial_re
self.result_spatial_resolution = result_spatial_resolution # [m]
self.solver_spatial_resolution = solver_spatial_resolution # [m]

def to_json(self):
return {"flag": self.flag,
"result_spatial_resolution": self.result_spatial_resolution,
"solver_spatial_resolution": self.solver_spatial_resolution}


class NLIParams(Parameters):
def __init__(self, method='gn_model_analytic', dispersion_tolerance=1, phase_shift_tolerance=0.1,
Expand All @@ -62,6 +67,12 @@ def __init__(self, method='gn_model_analytic', dispersion_tolerance=1, phase_shi
self.phase_shift_tolerance = phase_shift_tolerance
self.computed_channels = computed_channels

def to_json(self):
return {"method": self.method,
"dispersion_tolerance": self.dispersion_tolerance,
"phase_shift_tolerance": self.phase_shift_tolerance,
"computed_channels": self.computed_channels}


class SimParams(Parameters):
_shared_dict = {'nli_params': NLIParams(), 'raman_params': RamanParams()}
Expand Down
Loading

0 comments on commit 2b4a4ab

Please sign in to comment.