Skip to content
forked from deepqmc/deepqmc

Deep learning quantum Monte Carlo for electrons in real space

License

Notifications You must be signed in to change notification settings

TensorBFS/deepqmc

 
 

Repository files navigation

DeepQMC

checks coverage python pypi commits since last commit license code style chat doi

DeepQMC implements variational quantum Monte Carlo for electrons in molecules, using deep neural networks written in PyTorch as trial wave functions. Besides the core functionality, it contains implementations of the following ansatzes:

Installing

Install and update using Pip.

pip install -U deepqmc[wf,train,cli]

A simple example

from deepqmc import Molecule, evaluate, train
from deepqmc.wf import PauliNet

mol = Molecule.from_name('LiH')
net = PauliNet.from_hf(mol).cuda()
train(net)
evaluate(net)

Or on the command line:

$ cat lih/param.toml
system = 'LiH'
ansatz = 'paulinet'
[train_kwargs]
n_steps = 40
$ deepqmc train lih --save-every 20
converged SCF energy = -7.9846409186467
equilibrating: 49it [00:07,  6.62it/s]
training: 100%|███████| 40/40 [01:30<00:00,  2.27s/it, E=-8.0302(29)]
$ ln -s chkpts/state-00040.pt lih/state.pt
$ deepqmc evaluate lih
evaluating:  24%|▋  | 136/565 [01:12<03:40,  1.65it/s, E=-8.0396(17)]

Links

About

Deep learning quantum Monte Carlo for electrons in real space

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%