Build your autonomous hedge fund in minutes. AutoHedge harnesses the power of swarm intelligence and AI agents to automate market analysis, risk management, and trade execution.
-
Multi-Agent Architecture: Leverages specialized AI agents for different aspects of trading
- Director Agent for strategy and thesis generation
- Quant Agent for technical analysis
- Risk Management Agent for position sizing and risk assessment
- Execution Agent for trade implementation
-
Real-Time Market Analysis: Integrates with market data providers for live analysis
-
Risk-First Approach: Built-in risk management and position sizing
-
Structured Output: JSON-formatted trade recommendations and analysis
-
Comprehensive Logging: Detailed logging system for trade tracking and debugging
-
Extensible Framework: Easy to customize and extend with new capabilities
- Python 3.8+
swarms
packagetickr-agent
- Additional dependencies listed in
requirements.txt
pip install -U autohedge
OPENAI_API_KEY=""
WORKSPACE_DIR="agent_workspace"
# Example usage
from autohedge import AutoFund
# Define the stocks to analyze
stocks = ["NVDA"]
# Initialize the trading system with the specified stocks
trading_system = AutoFund(stocks)
# Define the task for the trading cycle
task = "Let's analyze nvidia to see if we should buy it, we have 50k$ in allocation"
# Run the trading cycle and print the results
print(trading_system.run(task=task))
AutoHedge uses a multi-agent architecture where each agent specializes in a specific aspect of the trading process:
graph TD
A[Director Agent] --> B[Quant Agent]
B --> C[Risk Manager]
C --> D[Execution Agent]
D --> E[Trade Output]
-
Director Agent
- Generates trading theses
- Coordinates overall strategy
- Analyzes market conditions
-
Quant Agent
- Performs technical analysis
- Evaluates statistical patterns
- Calculates probability scores
-
Risk Manager
- Assesses trade risks
- Determines position sizing
- Sets risk parameters
-
Execution Agent
- Generates trade orders
- Sets entry/exit points
- Manages order execution
AutoHedge generates structured output using Pydantic models:
class AutoHedgeOutput(BaseModel):
id: str # Unique identifier
name: Optional[str] # Strategy name
description: Optional[str] # Strategy description
stocks: Optional[List[str]] # List of stocks
task: Optional[str] # Analysis task
thesis: Optional[str] # Trading thesis
risk_assessment: Optional[str] # Risk analysis
order: Optional[Dict] # Trade order details
timestamp: str # Timestamp
current_stock: str # Current stock being analyzed
AutoHedge can be configured through environment variables or initialization parameters:
trading_system = AutoFund(
name="CustomStrategy",
description="My Trading Strategy",
stocks=["NVDA", "AAPL"],
output_dir="custom_outputs"
)
AutoHedge uses the loguru
library for comprehensive logging:
logger.add(
"trading_system_{time}.log",
rotation="500 MB",
retention="10 days",
level="INFO",
format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}"
)
from autohedge import TradingDirector, QuantAnalyst, RiskManager
# Custom director configuration
director = TradingDirector(
stocks=["NVDA", "AAPL"],
output_dir="custom_outputs"
)
# Custom analysis
analysis = director.generate_thesis(
task="Generate comprehensive analysis",
stock="NVDA"
)
from autohedge import RiskManager
risk_manager = RiskManager()
assessment = risk_manager.assess_risk(
stock="NVDA",
thesis=thesis,
quant_analysis=analysis
)
flowchart TB
subgraph Client
A[AutoHedge Client] --> B[Trading System]
end
subgraph Agents["Multi-Agent System"]
B --> C{Director Agent}
C --> D[Quant Agent]
C --> E[Risk Agent]
C --> F[Execution Agent]
D --> G[Technical Analysis]
D --> H[Statistical Analysis]
E --> I[Risk Assessment]
E --> J[Position Sizing]
F --> K[Order Generation]
F --> L[Trade Execution]
end
subgraph Output
K --> M[JSON Output]
L --> N[Trade Logs]
end
sequenceDiagram
participant C as Client
participant D as Director
participant Q as Quant
participant R as Risk
participant E as Execution
C->>D: Initialize Trading Cycle
activate D
D->>D: Generate Thesis
D->>Q: Request Analysis
activate Q
Q-->>D: Return Analysis
deactivate Q
D->>R: Request Risk Assessment
activate R
R-->>D: Return Risk Profile
deactivate R
D->>E: Generate Order
activate E
E-->>D: Return Order Details
deactivate E
D-->>C: Return Complete Analysis
deactivate D
stateDiagram-v2
[*] --> Initialization
Initialization --> ThesisGeneration
ThesisGeneration --> QuantAnalysis
QuantAnalysis --> RiskAssessment
RiskAssessment --> OrderGeneration: Risk Approved
RiskAssessment --> ThesisGeneration: Risk Rejected
OrderGeneration --> OrderExecution
OrderExecution --> Monitoring
Monitoring --> ThesisGeneration: New Cycle
Monitoring --> [*]: Complete
flowchart LR
subgraph Input
A[Market Data] --> B[Technical Indicators]
A --> C[Fundamental Data]
end
subgraph Processing
B --> D[Quant Analysis]
C --> D
D --> E[Risk Analysis]
E --> F[Order Generation]
end
subgraph Output
F --> G[Trade Orders]
F --> H[Risk Reports]
F --> I[Performance Metrics]
end
classDiagram
class AutoFund {
+String name
+String description
+List stocks
+Path output_dir
+run()
}
class TradingDirector {
+Agent director_agent
+TickrAgent tickr
+generate_thesis()
}
class QuantAnalyst {
+Agent quant_agent
+analyze()
}
class RiskManager {
+Agent risk_agent
+assess_risk()
}
class ExecutionAgent {
+Agent execution_agent
+generate_order()
}
AutoFund --> TradingDirector
AutoFund --> QuantAnalyst
AutoFund --> RiskManager
AutoFund --> ExecutionAgent
To use the API, git clone the repo:
pip3 install -r requirements.txt
python api.py
Server will start at http://localhost:8000
All endpoints except /users
(POST) require the X-API-Key
header.
POST /users
Content-Type: application/json
{
"username": "trader1",
"email": "trader@example.com",
"fund_name": "Alpha Fund",
"fund_description": "AI Trading Strategy"
}
Returns API key in response.
GET /users/me
X-API-Key: your-api-key
POST /trades
X-API-Key: your-api-key
Content-Type: application/json
{
"stocks": ["NVDA", "AAPL"],
"task": "Analyze tech stocks for $1M allocation",
"allocation": 1000000.0,
"strategy_type": "momentum",
"risk_level": 7
}
GET /trades?limit=10&skip=0&status=completed
X-API-Key: your-api-key
GET /trades/{trade_id}
X-API-Key: your-api-key
DELETE /trades/{trade_id}
X-API-Key: your-api-key
GET /analytics/history?days=30
X-API-Key: your-api-key
import requests
BASE_URL = "http://localhost:8000"
# Create user and get API key
def get_api_key():
response = requests.post(
f"{BASE_URL}/users",
json={
"username": "test_trader",
"email": "test@example.com",
"fund_name": "Test Fund",
"fund_description": "Test Strategy"
}
)
return response.json()["api_key"]
# Use the API
api_key = get_api_key()
headers = {"X-API-Key": api_key}
# Create a trade
trade = requests.post(
f"{BASE_URL}/trades",
headers=headers,
json={
"stocks": ["NVDA"],
"task": "Test trade",
"allocation": 1000000.0
}
)
print(trade.json())
- Use a production ASGI server:
uvicorn main:app --host 0.0.0.0 --port 8000 --workers 4
- Set environment variables:
export AUTOHEDGE_ENV=production
export AUTOHEDGE_LOG_LEVEL=INFO
- 401: Invalid API key
- 403: Unauthorized access
- 404: Resource not found
- 422: Validation error
- 500: Server error
- Store API keys securely
- Use appropriate error handling
- Implement rate limiting in production
- Monitor API usage
- Regularly backup trade data
- Swagger UI:
http://localhost:8000/docs
- ReDoc:
http://localhost:8000/redoc
We welcome contributions! Please see our Contributing Guidelines for details.
- Fork the repository
- Create your feature branch (
git checkout -b feature/AmazingFeature
) - Commit your changes (
git commit -m 'Add some AmazingFeature'
) - Push to the branch (
git push origin feature/AmazingFeature
) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
- Swarms for the AI agent framework
- Tickr Agent for market data integration
- Issue Tracker: GitHub Issues
- Discord: Join our community
Created with β€οΈ by The Swarm Corporation