Skip to content

Through supervised projects on YouTube, I gained knowledge in webscraping. This included learning table extraction techniques from renowned data analysts and creating a pandas dataframe in a live session to scrape popular GitHub topics, resulting in CSV files named 'companies' and 'github_topics'.

Notifications You must be signed in to change notification settings

The-analyst001/Web_Scraping_projects

Repository files navigation

Web_Scraping_projects

I acquired knowledge in webscraping through supervised projects on YouTube videos. These projects encompassed:

  • Table Extraction projects: I learned from the esteemed data analysts @Alextheanalyst, specifically through their YouTube video at https://youtu.be/8dTpNajxaH0. With their guidance, I undertook my first webscraping mini-project, which involved extracting a table from the Wikipedia website that represented the largest companies in the United States by revenue. It was a delightful experience as I delved into the fascinating world of webscraping. Throughout this project, I extensively utilized modules like Pandas, BeautifulSoup, and requests, with a specific focus on leveraging the find_all() method. Extracting the desired table proved to be challenging due to the presence of multiple tables on the webpage. However, with determination and perseverance, I successfully accomplished the task, resulting in a rewarding outcome. This experience was both fruitful and enlightening, leading to the creation of a CSV file named 'companies'.

  • Scraping Popular Github Topics projects: I had the opportunity to further enhance my skills by participating in a live session on the YouTube channel @JOVIAN (https://www.youtube.com/live/RKsLLG-bzEY?feature=share). During this session, I built a pandas dataframe from scratch, which included popular topic titles, descriptions, and URLs. The most demanding aspect of this project was retrieving the URLs for each topic. Ultimately, I saved the resulting dataframe as a CSV file named 'github_topics'.

About

Through supervised projects on YouTube, I gained knowledge in webscraping. This included learning table extraction techniques from renowned data analysts and creating a pandas dataframe in a live session to scrape popular GitHub topics, resulting in CSV files named 'companies' and 'github_topics'.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published