Skip to content

Official implementation for MorphGrower (ICML2024 Oral)

License

Notifications You must be signed in to change notification settings

Thinklab-SJTU/MorphGrower

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MorphGrower

Publication PRs License Stars

Official implementation for our paper:

MorphGrower: A Synchronized Layer-by-layer Growing Approach for Plausible Neuronal Morphology Generation

Nianzu Yang, Kaipeng Zeng, Haotian Lu, Yexin Wu, Zexin Yuan, Danni Chen, Shengdian Jiang, Jiaxiang Wu, Yimin Wang, Junchi Yan

Forty-first International Conference on Machine Learning (ICML 2024, Oral)

Codes for MorphGrower

Folder Specification

  • model/: File used to define the MorphGrower model.
  • pretrain/: Folder for storing pre-trained models.
  • scripts/: Scripts used for training, metric calculation, and other tasks.
  • utils/: Scripts for neuron output processing and log file handling.
  • generate.py: Utilizing the MorphGrower model for neuron generation during the inference phase.
  • measure.py: Evaluating metrics on generated neuron data.
  • train.py: Training a MorphGrower model on a specified dataset.
  • pretrain.py: pretrain on artificial dataset.

Package Dependency

torch: 2.0.0
numpy: 1.21.2
scikit-learn: 1.2.2
scipy: 1.12.0
pyg: 2.3.1
morphpy: 0.7.2
pandas: 1.3.5

Prepare Data

We use four datasets,you can download them:

When you use RGC dataset, please use MATLAB or Python to transfor .mat file to .swc After you download datasets, you can use the function 'smooth_swc' in utiles/utils.py to preprocess the data.

Run the Code

Pretraining:

python pretrain --seed ${seed} --lr ${lr} --bs ${bs} --dropout ${dropout} --max_length 32 --teaching 0.5 --train_ratio 0.7 --valid_ratio 0.15 --data_dir ${data} --dim ${dim} --device ${device} --epoch ${epoch} --base_log_dir ${log} --ordered

Train the MorphGrower :

python train.py --data_dir ${data} --base_log_dir ${log} --pretrained_path ${pretrain} --device ${device} --seed ${seed} --kappa {$kappa}

Then, we can generate results :

python generate.py --model_path ${model} --data_dir ${data} --output_dir ${output} --device ${device} --kappa ${kappa} --generate_layers -1 --only_swc

If you wish to evaluate metrics for the output neuron data, you can run :

python measure.py --data_path ${output}

Citation

@inproceedings{
    yang2024morphgrower,
    title={MorphGrower: A Synchronized Layer-by-layer Growing Approach for Plausible Neuronal Morphology Generation},
    author={Nianzu Yang and Kaipeng Zeng and Haotian Lu and Yexin Wu and Zexin Yuan and Danni Chen and Shengdian Jiang and Jiaxiang Wu and Yimin Wang and Junchi Yan},
    booktitle={Forty-first International Conference on Machine Learning},
    year={2024},
    url={https://openreview.net/forum?id=ZTN866OsGx}
}

Welcome to contact us yangnianzu@sjtu.edu.cn or zengkaipeng@sjtu.edu.cn for any question.

About

Official implementation for MorphGrower (ICML2024 Oral)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages