Skip to content

Tohoku-University-Takizawa-Lab/CQGym-OD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CQGym-OD: Joint Scheduling of on-demand and rigid jobs in HPC systems

Background

Recently, on-demand and rigid jobs are jointly scheduled in High Performance Computing (HPC) systems. This repository utilizes Reinforcement Learning (LR) to jointly schedule these jobs.

CQGym-OD

CQGym-OD is developed based on CQGym.

Features

The scheduling result is evaluated.

Modules

  • Evaluate.py (Newly Designed)
    • Evaluate the scheduling results.

Usages

train DQL model dql0 using the first 1,500 traces of SDSC-SP2-1998-4-2-cln.swf

python cqsim.py -j SDSC-SP2-1998-4-2-cln.swf -n SDSC-SP2-1998-4-2-cln.swf -R 1500 --is_training 1 --output_weight_file dql0 --rl_alg DQL 

train DQL model dql1 based dql0 using trace 1501~3000 of SDSC-SP2-1998-4-2-cln.swf

python cqsim.py -j SDSC-SP2-1998-4-2-cln.swf -n SDSC-SP2-1998-4-2-cln.swf -r 1501 -R 1500 --is_training 1 --input_weight_file dql0 --output_weight_file dql1 --rl_alg DQL

test the performance of dql0 using trace 3001~8000 of SDSC-SP2-1998-4-2-cln.swf

python cqsim.py -j SDSC-SP2-1998-4-2-cln.swf -n SDSC-SP2-1998-4-2-cln.swf -r 3001 -R 5000 --is_training 0 --input_weight_file dql0 --rl_alg DQL

test the performance of dql1 using trace 3001~8000 of SDSC-SP2-1998-4-2-cln.swf

python cqsim.py -j SDSC-SP2-1998-4-2-cln.swf -n SDSC-SP2-1998-4-2-cln.swf -r 3001 -R 5000 --is_training 0 --input_weight_file dql1 --rl_alg DQL

Environments

Hardware & OS.

Environment version
MBP14, M1 Pro 2021
OS X Sonoma 14.1
X Code 15.1

Python package.

Environments version
Python 3.9.6
Packages link

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages