Skip to content

TrainingByPackt/Applied-Deep-Learning-with-Keras-eLearning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GitHub issues GitHub forks GitHub stars PRs Welcome

Applied-Deep-Learning-with-Keras

Applied Deep Learning with Keras takes you from a basic knowledge of machine learning and Python to an expert understanding of applying Keras to develop efficient deep learning solutions. This course teaches you new techniques to handle neural networks, and in turn, broadens your options as a data scientist.

What you will learn

  • Understand the difference between single-layer and multi-layer neural network models
  • Use Keras to build simple logistic regression models, deep neural networks, recurrent neural networks, and convolutional neural networks
  • Apply L1, L2, and dropout regularization to improve the accuracy of your model
  • Implement cross-validate using Keras wrappers with scikit-learn
  • Understand the limitations of model accuracy

Hardware requirements

For an optimal experience, we recommend the following hardware configuration:

  • Processor: Intel Core i5 or equivalent
  • Memory: 4 GB RAM (8 GB Preferred)
  • Storage: 35 GB available space

Software requirements

You'll also need the following software installed in advance:

  • OS: Windows 7 SP1 64-bit, Windows 8.1 64-bit or Windows 10 64-bit, Ubuntu Linux, or the latest version of OS X
  • Browser: Google Chrome/Mozilla Firefox Latest Version
  • Notepad++/Sublime Text as IDE (Optional, as you can practice everything using Jupyter notecourse on your browser)
  • Python 3.4+ (latest is Python 3.7) installed (from https://python.org)
  • Python libraries as needed (Jupyter, Numpy, Pandas, Matplotlib, BeautifulSoup4, and so on)