Skip to content

VAIV-SKKU/YOLO-Train

Repository files navigation

1. YOLOv7

The following is the official document of YOLOv7

1-1 YOLOv7 Official Document

Implementation of paper - YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

PWC Hugging Face Spaces Open In Colab arxiv.org

Web Demo

Performance

MS COCO

Model Test Size APtest AP50test AP75test batch 1 fps batch 32 average time
YOLOv7 640 51.4% 69.7% 55.9% 161 fps 2.8 ms
YOLOv7-X 640 53.1% 71.2% 57.8% 114 fps 4.3 ms
YOLOv7-W6 1280 54.9% 72.6% 60.1% 84 fps 7.6 ms
YOLOv7-E6 1280 56.0% 73.5% 61.2% 56 fps 12.3 ms
YOLOv7-D6 1280 56.6% 74.0% 61.8% 44 fps 15.0 ms
YOLOv7-E6E 1280 56.8% 74.4% 62.1% 36 fps 18.7 ms

Installation

Docker environment (recommended)

Expand
# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolov7 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov7 --shm-size=64g nvcr.io/nvidia/pytorch:21.08-py3

# apt install required packages
apt update
apt install -y zip htop screen libgl1-mesa-glx

# pip install required packages
pip install seaborn thop

# go to code folder
cd /yolov7

Testing

yolov7.pt yolov7x.pt yolov7-w6.pt yolov7-e6.pt yolov7-d6.pt yolov7-e6e.pt

python test.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.65 --device 0 --weights yolov7.pt --name yolov7_640_val

You will get the results:

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.51206
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.69730
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.55521
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.35247
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.55937
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.66693
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.38453
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.63765
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.68772
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.53766
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.73549
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.83868

To measure accuracy, download COCO-annotations for Pycocotools to the ./coco/annotations/instances_val2017.json

Training

Data preparation

bash scripts/get_coco.sh
  • Download MS COCO dataset images (train, val, test) and labels. If you have previously used a different version of YOLO, we strongly recommend that you delete train2017.cache and val2017.cache files, and redownload labels

Single GPU training

# train p5 models
python train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml

# train p6 models
python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml

Multiple GPU training

# train p5 models
python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch-size 128 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml

# train p6 models
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_aux.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch-size 128 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml

Transfer learning

yolov7_training.pt yolov7x_training.pt yolov7-w6_training.pt yolov7-e6_training.pt yolov7-d6_training.pt yolov7-e6e_training.pt

Single GPU finetuning for custom dataset

# finetune p5 models
python train.py --workers 8 --device 0 --batch-size 32 --data data/custom.yaml --img 640 640 --cfg cfg/training/yolov7-custom.yaml --weights 'yolov7_training.pt' --name yolov7-custom --hyp data/hyp.scratch.custom.yaml

# finetune p6 models
python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/custom.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6-custom.yaml --weights 'yolov7-w6_training.pt' --name yolov7-w6-custom --hyp data/hyp.scratch.custom.yaml

Re-parameterization

See reparameterization.ipynb

Inference

On video:

python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source yourvideo.mp4

On image:

python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source inference/images/horses.jpg

Export

Pytorch to CoreML (and inference on MacOS/iOS) Open In Colab

Pytorch to ONNX with NMS (and inference) Open In Colab

python export.py --weights yolov7-tiny.pt --grid --end2end --simplify \
        --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640 --max-wh 640

Pytorch to TensorRT with NMS (and inference) Open In Colab

wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-tiny.pt
python export.py --weights ./yolov7-tiny.pt --grid --end2end --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640
git clone https://github.com/Linaom1214/tensorrt-python.git
python ./tensorrt-python/export.py -o yolov7-tiny.onnx -e yolov7-tiny-nms.trt -p fp16

Pytorch to TensorRT another way Open In Colab

Expand

wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-tiny.pt
python export.py --weights yolov7-tiny.pt --grid --include-nms
git clone https://github.com/Linaom1214/tensorrt-python.git
python ./tensorrt-python/export.py -o yolov7-tiny.onnx -e yolov7-tiny-nms.trt -p fp16

# Or use trtexec to convert ONNX to TensorRT engine
/usr/src/tensorrt/bin/trtexec --onnx=yolov7-tiny.onnx --saveEngine=yolov7-tiny-nms.trt --fp16

Tested with: Python 3.7.13, Pytorch 1.12.0+cu113

Pose estimation

code yolov7-w6-pose.pt

See keypoint.ipynb.

Instance segmentation

code yolov7-mask.pt

See instance.ipynb.

Instance segmentation

code yolov7-seg.pt

YOLOv7 for instance segmentation (YOLOR + YOLOv5 + YOLACT)

Model Test Size APbox AP50box AP75box APmask AP50mask AP75mask
YOLOv7-seg 640 51.4% 69.4% 55.8% 41.5% 65.5% 43.7%

Anchor free detection head

code yolov7-u6.pt

YOLOv7 with decoupled TAL head (YOLOR + YOLOv5 + YOLOv6)

Model Test Size APval AP50val AP75val
YOLOv7-u6 640 52.6% 69.7% 57.3%

Citation

@article{wang2022yolov7,
  title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},
  author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
  journal={arXiv preprint arXiv:2207.02696},
  year={2022}
}

Acknowledgements

Expand

1-2 YOLOv7 Changes

Components

  • detect.py

    • Creates a csv file containing information regarding the 'Ticker,Date,Label,Close,Probability,Range,Detect' for each individual stock.

  • draw.py

    • Allows us to draw the box and label on an image if we have the according labeling/detect csv files

Getting Started

1. Clone Repository

git clone https://github.com/VAIV-SKKU/YOLO-Train.git

2. Add Custom Dataset path to kospiALL.yaml

train: [CUSTOM_TRAIN_DATASET_PATH]
val: [CUSTOM_VAL_DATASET_PATH]

3. Train the model

python train.py --workers 8 --device 0 --batch-size 32 --data data/[CUSTOM_FILE].yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml

4. Use the weights from the trained model to run detect.py

python detect.py --save-txt --trace --weights [WEIGHTS_FROM_TRAINED_MODEL] --conf 0.8 --imgsz 640 --source [DETECT_IMAGE_FOLDER_PATH] --name '' --pair 0 


Condition

  • Directory Condition To use module in Data Folder
├── Data
└── Yolo-Train
  • Image Folder Condition To convert pixel coordinate to date
{Image Folder}
├── images
│     └── ...
│         ├── 000250_2022-12-01_245.png
│         └── ...
└── pixels
      └── ...
          ├── 000250_2022-12-01_245.csv
          └── ...

Arguments

  • pair 0 : Detects both BUY/SELL signals
  • pair 1 : Only detects BUY signals & SELL price for five transaction days later
  • pair 2 : Only detects SELL signals
  • conf : Only detects signals above the inserted confidence score

Running detect.py results in creating the 'signal' folder of the recent 'runs' folder. The individual csv files for each stock are stored inside the 'signal' folder. We later use these csv files to calculate the annual profits.

runs
└── detect
      └── [DUMMY_RUN]
            ├── images
            ├── labels  
            ├── signals
                 ├── 000020.csv
                 └── ...

5. Calculate the annual profits

1-3 KOSPI50 YOLO Profit Test Results

Dataset:

image

Result:

  1. Auto-sell after five transaction days image

  2. Sell when BUY/SELL pair is satisfied image

1-4 Reference Papers

Paper link: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9092995

Github link: https://github.com/gunaytemur/With-Yolov3-Buy-Sell-on-Candlestick

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages